搜索

x
中国物理学会期刊

钙钛矿太阳电池中的缓冲层研究进展

Progress in perovskite solar cells based on different buffer layer materials

CSTR: 32037.14.aps.69.20200543
PDF
HTML
导出引用
  • 基于钙钛矿材料优异的光电特性, 钙钛矿太阳电池的转换效率迅速提高. 但制约钙钛矿太阳电池性能的因素依然存在, 例如: 界面问题、稳定性问题等. 通过在载流子传输层/电极及载流子传输层/光吸收层之间引入能带结构合适的缓冲层, 可有效改善界面间的能带失配、载流子复合及化学反应等问题, 进而提高钙钛矿电池中的电荷分离及收集效率, 实现界面及稳定性问题的有效改善. 本文总结了当前钙钛矿太阳电池中引入的缓冲层材料,全面分析了不同缓冲层材料钝化空穴传输层/阳极、电子传输层/阴极、空穴传输层/吸收层及电子传输层/吸收层间界面的机理, 对比了不同缓冲层材料对电池性能的影响, 总结了缓冲层材料在钙钛矿电池中的作用, 最后指出了钙钛矿电池中各界面缓冲层材料的研究趋势及发展方向.

     

    Based on the excellent optoelectronic properties of organic-inorganic hybrids perovskite materials, the power conversion efficiency of perovskite solar cells (PSCs) is rapidly increasing. However, factors that restrict the performance of PSCs still exist, such as interface and stability problems. Problems, such as band mismatching, carrier recombination and chemical reaction between interfaces, could be alleviated by introducing a buffer layer (BL) with a proper band structure between different layers. Moreover, stability as well as charge separation and collection could also be efficiently improved in PSCs. In this paper, an overview of the most contemporary strategies of BLs was provided. The passivation mechanism of BLs at different interfaces are highlighted and discussed in detail. Furthermore, the performances of recently developed BLs in PSCs are compared. Finally, we elaborate on the remaining challenges and future directions for the development of BLs to achieve high-efficiency and high-stability PSCs.

     

    目录

    /

    返回文章
    返回
    Baidu
    map