搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低损耗材料微波介电性能测试中识别TE01δ模式的新方法

李雷 颜涵 陈湘明

引用本文:
Citation:

低损耗材料微波介电性能测试中识别TE01δ模式的新方法

李雷, 颜涵, 陈湘明

A new method for identifying TE01δ mode during microwave dielectric measurements of low-loss materials

Li Lei, Yan Han, Chen Xiang-Ming
cstr: 32037.14.aps.69.20200275
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 工作于TE01δ模式的金属谐振腔法是评价低损耗材料微波介电性能的通用方法. 微波介质谐振器均为多模式谐振器, 故正确识别TE01δ模式是微波介电测试的基础. TE01δ模式的识别可通过预测谐振频率及其随谐振器尺寸的变化、根据激励条件排除寄生模式等手段实现, 但已有方法存在复杂、易识别错误等缺点. 为此, 本文发展了一种准确识别TE01δ模式的简单方法. 这种方法引入了介电性能已知的低损耗参考试样, 通过测试金属谐振腔中只放置参考试样及同时放置参考试样和待测试样时TE01δ模式的谐振频率, 利用有限单元分析计算出待测试样的粗略介电常数, 并进一步预测只放置待测试样时TE01δ模式的谐振频率. 此谐振频率的预测值与测试结果相差1%以内, 因此很容易将TE01δ模式与其他寄生模式区分开, 进而实现TE01δ模式的准确识别.
    The metal resonant cavity method working with TE01δ mode is a universal method for evaluating the microwave dielectric properties of low-loss materials. All the microwave dielectric resonators are multi-mode resonators, so the correct identification of TE01δ mode is the basis for the microwave dielectric measurements. The TE01δ mode can be identified by predicting the resonant frequency and its variation with resonator size, expelling the spurious modes according to the exciting conditions, etc., while these methods are relatively complex and sometimes unreliable. In the present work, a simple method for accurately identifying the TE01δ mode is developed. A low-loss reference sample with known dielectric properties is introduced and placed in the cavity for the first step, and the to-be-measured sample is placed on the reference sample for the second step. The rough permittivity of the to-be-measured sample can be calculated from the TE01δ-mode resonant frequencies in the two steps through the finite element analysis, and is used to predict the resonant frequency for TE01δ mode when only the to-be-measured sample is placed in the cavity. The difference between the predicted and measured TE01δ-mode resonant frequencies for the to-be-measured sample is less than 1%, so that the TE01δ mode can be easily distinguished from the spurious modes and accurately identified.
      通信作者: 李雷, zjulilei@zju.edu.cn
      Corresponding author: Li Lei, zjulilei@zju.edu.cn
    [1]

    Sebastian M T 2008 Dielectric Materials for Wireless Communication. (Oxford: Elsevier Science Publishers) pp1–48

    [2]

    Narang S B, Bahel S 2010 J. Ceram. Process. Res. 11 316

    [3]

    Sebastian M T, Ubic R, Jantunen H 2015 Int. Mater. Rev. 60 392Google Scholar

    [4]

    Chen L F, Ong C K, Neo C P, Varadan V V, Varadan V K 2004 Microwave Electronics: Measurement and Material Characterization (Chichester: John Wiley & Sons) pp37–141

    [5]

    Kajfez D, Guillon P 1998 Dielectric Resonators (2nd Ed.) (Atlanta: Noble) pp327–430

    [6]

    Hakki B W, Coleman P D 1960 IEEE Trans. Microwave Theory Tech. 8 402Google Scholar

    [7]

    Courtney W E 1970 IEEE Trans. Microwave Theory Tech. 18 476Google Scholar

    [8]

    Kajfez D 1984 IEEE Trans. Microwave Theory Tech. 32 941Google Scholar

    [9]

    Kobayashi Y 1985 IEEE Trans. Microwave Theory Tech. 33 1361Google Scholar

    [10]

    Dube D C, Zurmuhlen R, Bell A, Setter N, Wersing W 1997 J. Am. Ceram. Soc. 80 1095Google Scholar

    [11]

    Fan X C, Chen X M, Liu X Q 2005 IEEE Trans. Microwave Theory Tech. 53 3130Google Scholar

    [12]

    Krupka J, Huang W T, Tung M J 2005 Meas. Sci. Technol. 16 1014Google Scholar

    [13]

    Li L, Zhu J Y, Chen X M 2016 IEEE Trans. Microwave Theory Tech. 64 3781Google Scholar

    [14]

    Kajfez D, Gundavajhala A 1993 Electron. Lett. 29 1936Google Scholar

    [15]

    Alford N M, Breeze J, Penn S J, Poole M 2000 IEE Proc.: Sci. Meas. Technol. 147 269Google Scholar

    [16]

    Sebastian M T, Jawahar I N, Mohanan P 2003 Mater. Sci. Eng. B 97 258Google Scholar

    [17]

    Cho J Y, Yoon K H, Kim E S 2003 J. Am. Ceram. Soc. 86 1330Google Scholar

    [18]

    Li L, Chen X M 2006 J. Am. Ceram. Soc. 89 544Google Scholar

    [19]

    Li L, Chen X M 2006 J. Am. Ceram. Soc. 89 557Google Scholar

    [20]

    Li L, Chen X M, Fan X C 2006 J. Eur. Ceram. Soc. 26 3265Google Scholar

    [21]

    Li L, Chen X M 2009 Ferroelectrics 387 7Google Scholar

    [22]

    Wang D W, Zhou D, Zhang S Y, Vardaxoglou Y, Whittow W G, Cadman D, Reaney I M 2018 ACS Sustainable Chem. Eng. 6 2438Google Scholar

    [23]

    Zhang J, Luo Y, Yue Z X, Li L T 2019 J. Am. Ceram. Soc. 102 342Google Scholar

    [24]

    Li L, Chen X M, Ni L, Fu M S 2007 Appl. Phys. Lett. 91 092906Google Scholar

    [25]

    Li L, Fang Y, Chen X M 2012 J. Am. Ceram. Soc. 95 982Google Scholar

    [26]

    Li L, Zhang W, Chen X M, Zhu H Y 2012 J. Appl. Phys. 111 064108Google Scholar

    [27]

    Li L, Zhang B Q, Chen X M 2013 Appl. Phys. Lett. 103 192902Google Scholar

    [28]

    Li L, Wang Z W, Chen X M 2015 Mater. Res. Bull. 67 251Google Scholar

    [29]

    Krupka J, Derzakowski K, Tobar M, Hartnett J, Geyer R G 1999 Meas. Sci. Technol. 10 387Google Scholar

    [30]

    Kooi P S, Leong M S, Prakash A L S 1985 IEE Proc. H Microwave Opt. Antennas 32 7Google Scholar

    [31]

    Yuan H X, Chen X M, Mao M M 2009 J. Am. Ceram. Soc. 92 2286Google Scholar

    [32]

    O’Bryan H M, Thomson J, Plourde J K 1974 J. Am. Ceram. Soc. 57 450Google Scholar

    [33]

    Huang C L, Chen Y C 2003 Mater. Sci. Eng. A 345 106Google Scholar

    [34]

    Li L, Spreitzer M, Suvorov D 2014 Appl. Phys. Lett. 104 182902Google Scholar

    [35]

    Hong W B, Li L, Yan H, Wu S Y, Yang H S, Chen X M 2020 J. Materiomics 6 233Google Scholar

    [36]

    Li L, Hong W B, Chen G Y, Chen X M 2019 J. Alloys Compd. 774 706Google Scholar

  • 图 1  识别待测试样TE01δ模式谐振峰的三个步骤

    Fig. 1.  Three steps for identifying TE01δ-mode resonant mode of to-be-measured sample.

    图 2  待测试样(a) S1, (b) S2, (c) S3, (d) S4及(e) S5的|S21|随频率的变化

    Fig. 2.  |S21| as a function of frequency for to-be-measured samples: (a) S1; (b) S2; (c) S3; (d) S4; (e) S5.

    图 3  (a) 谐振腔中放置R3及R3 + S2时TE01δ模式的谐振峰; (b) 谐振腔中仅放置S2时|S21|随频率的变化

    Fig. 3.  (a) TE01δ-mode resonant peaks for R3 and R3 + S2 in the cavity; (b) |S21| as a function of frequency for only S2 in the cavity.

    表 1  参考试样及待测试样的尺寸与介电常数

    Table 1.  Dimension and permittivity of references and to-be-measured samples.

    类型编号直径/mm厚度/mmεr
    参考试样R110.171.6419.3
    R210.861.4839.4
    R310.751.4977.2
    R49.361.04434
    待测试样S112.036.512.79
    S29.905.104.78
    S310.005.009.50
    S410.124.6719.4
    S510.835.4439.2
    下载: 导出CSV

    表 2  不同参考试样/待测试样组合时各谐振频率的测试及计算结果

    Table 2.  Measured and calculated resonant frequencies for different reference/to-be-measured sample combinations.

    参考
    试样
    待测
    试样
    f0,1/GHzf0,2/GHzf0,3/GHzf0,4/GHzf0,5/GHz
    R3S15.2245.18415.10714.98814.642
    R3S25.2245.16013.86213.73614.958
    R3S35.2245.06710.21610.15810.360
    R3S45.2244.8497.3587.2989.035
    R3S55.2244.2174.8304.8008.376
    R1S210.0469.49813.80713.73614.958
    R2S27.2157.02813.78913.73614.958
    R4S22.7602.75213.83013.73614.958
    下载: 导出CSV

    表 3  TE01δ模式谐振频率、粗略介电常数的相对误差及介电性能测试结果

    Table 3.  Relative errors of TE01δ-mode resonant frequency and rough permittivity, and measured results of dielectric properties

    ReferenceSample(f0,3f0,4)/ f0, 4εr,rouεr,sam(εr,rouεr,sam)/εr, samtanδ
    R3S10.80%2.732.79–2.2%1.08 × 10–4
    R3S20.92%4.684.78–2.1%2.75 × 10–4
    R3S30.58%9.389.50–1.3%2.56 × 10–5
    R3S40.83%19.119.4–1.5%7.63 × 10–5
    R3S50.62%38.739.2–1.3%1.21 × 10–4
    R1S20.51%4.724.78–1.2%2.75 × 10–4
    R2S20.38%4.744.78–0.8%2.75 × 10–4
    R4S20.68%4.704.78–1.8%2.75 × 10–4
    下载: 导出CSV
    Baidu
  • [1]

    Sebastian M T 2008 Dielectric Materials for Wireless Communication. (Oxford: Elsevier Science Publishers) pp1–48

    [2]

    Narang S B, Bahel S 2010 J. Ceram. Process. Res. 11 316

    [3]

    Sebastian M T, Ubic R, Jantunen H 2015 Int. Mater. Rev. 60 392Google Scholar

    [4]

    Chen L F, Ong C K, Neo C P, Varadan V V, Varadan V K 2004 Microwave Electronics: Measurement and Material Characterization (Chichester: John Wiley & Sons) pp37–141

    [5]

    Kajfez D, Guillon P 1998 Dielectric Resonators (2nd Ed.) (Atlanta: Noble) pp327–430

    [6]

    Hakki B W, Coleman P D 1960 IEEE Trans. Microwave Theory Tech. 8 402Google Scholar

    [7]

    Courtney W E 1970 IEEE Trans. Microwave Theory Tech. 18 476Google Scholar

    [8]

    Kajfez D 1984 IEEE Trans. Microwave Theory Tech. 32 941Google Scholar

    [9]

    Kobayashi Y 1985 IEEE Trans. Microwave Theory Tech. 33 1361Google Scholar

    [10]

    Dube D C, Zurmuhlen R, Bell A, Setter N, Wersing W 1997 J. Am. Ceram. Soc. 80 1095Google Scholar

    [11]

    Fan X C, Chen X M, Liu X Q 2005 IEEE Trans. Microwave Theory Tech. 53 3130Google Scholar

    [12]

    Krupka J, Huang W T, Tung M J 2005 Meas. Sci. Technol. 16 1014Google Scholar

    [13]

    Li L, Zhu J Y, Chen X M 2016 IEEE Trans. Microwave Theory Tech. 64 3781Google Scholar

    [14]

    Kajfez D, Gundavajhala A 1993 Electron. Lett. 29 1936Google Scholar

    [15]

    Alford N M, Breeze J, Penn S J, Poole M 2000 IEE Proc.: Sci. Meas. Technol. 147 269Google Scholar

    [16]

    Sebastian M T, Jawahar I N, Mohanan P 2003 Mater. Sci. Eng. B 97 258Google Scholar

    [17]

    Cho J Y, Yoon K H, Kim E S 2003 J. Am. Ceram. Soc. 86 1330Google Scholar

    [18]

    Li L, Chen X M 2006 J. Am. Ceram. Soc. 89 544Google Scholar

    [19]

    Li L, Chen X M 2006 J. Am. Ceram. Soc. 89 557Google Scholar

    [20]

    Li L, Chen X M, Fan X C 2006 J. Eur. Ceram. Soc. 26 3265Google Scholar

    [21]

    Li L, Chen X M 2009 Ferroelectrics 387 7Google Scholar

    [22]

    Wang D W, Zhou D, Zhang S Y, Vardaxoglou Y, Whittow W G, Cadman D, Reaney I M 2018 ACS Sustainable Chem. Eng. 6 2438Google Scholar

    [23]

    Zhang J, Luo Y, Yue Z X, Li L T 2019 J. Am. Ceram. Soc. 102 342Google Scholar

    [24]

    Li L, Chen X M, Ni L, Fu M S 2007 Appl. Phys. Lett. 91 092906Google Scholar

    [25]

    Li L, Fang Y, Chen X M 2012 J. Am. Ceram. Soc. 95 982Google Scholar

    [26]

    Li L, Zhang W, Chen X M, Zhu H Y 2012 J. Appl. Phys. 111 064108Google Scholar

    [27]

    Li L, Zhang B Q, Chen X M 2013 Appl. Phys. Lett. 103 192902Google Scholar

    [28]

    Li L, Wang Z W, Chen X M 2015 Mater. Res. Bull. 67 251Google Scholar

    [29]

    Krupka J, Derzakowski K, Tobar M, Hartnett J, Geyer R G 1999 Meas. Sci. Technol. 10 387Google Scholar

    [30]

    Kooi P S, Leong M S, Prakash A L S 1985 IEE Proc. H Microwave Opt. Antennas 32 7Google Scholar

    [31]

    Yuan H X, Chen X M, Mao M M 2009 J. Am. Ceram. Soc. 92 2286Google Scholar

    [32]

    O’Bryan H M, Thomson J, Plourde J K 1974 J. Am. Ceram. Soc. 57 450Google Scholar

    [33]

    Huang C L, Chen Y C 2003 Mater. Sci. Eng. A 345 106Google Scholar

    [34]

    Li L, Spreitzer M, Suvorov D 2014 Appl. Phys. Lett. 104 182902Google Scholar

    [35]

    Hong W B, Li L, Yan H, Wu S Y, Yang H S, Chen X M 2020 J. Materiomics 6 233Google Scholar

    [36]

    Li L, Hong W B, Chen G Y, Chen X M 2019 J. Alloys Compd. 774 706Google Scholar

计量
  • 文章访问数:  11915
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-04-10
  • 刊出日期:  2020-06-20

/

返回文章
返回
Baidu
map