搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管

李妤晨 陈航宇 宋建军

引用本文:
Citation:

用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管

李妤晨, 陈航宇, 宋建军

Ge Schottky diode for improving energy conversion efficiency of the receiver of microwave wireless power transfer

Li Yu-Chen, Chen Hang-Yu, Song Jian-Jun
cstr: 32037.14.aps.69.20191415
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 转换效率是微波无线能量传输系统的关键参数, 为提高该参数指标, 本文提出了一种GeOI折叠空间电荷区肖特基二极管, 该器件结构可以显著降低肖特基二极管的零偏置电容, 利于能量转换效率的提高. 通过在ADS仿真软件中使用该器件SPICE模型进行整流电路仿真, 在输入能量为24.5 dBm时, 获得了75.4%的转换效率.
    Microwave wireless power transfer(MWPT) can break through the restriction of transmission line to transmit electrical energy, which is conducive to dealing with power supply in complex scenarios, and has a very large application prospect. Energy conversion efficiency is an important parameter of MWPT. Hence, researchers are focus on improving the conversion efficiency of MWPT from different ways. Schottky diode is the core component of the rectifier circuit, which determines the limit of the energy conversion efficiency. However, the research involving the design of Schottky diode has rarely reported. In this paper, a GeOI folded space charge region Schottky diode is proposed. The space charge region of the proposed Schottky diode is composed of two parts: the vertical space charge region and the horizontal space charge region. So the capacitor is also divided into two parts, namely the vertical capacitor and the lateral capacitor. In the device model, these two capacitors are in series. So the total capacitance will be reduced. This article establishes its capacitance model and completes the optimization of device material parameters and structure parameters. The designed device parameters are as follows: the doping concentration of the heavily doped buffer layer on the left side of the Ge material is 2 × 1020 cm–3 to form Ohm contact, the doping concentration of the lightly doped region on the right side is 3.8 × 1017 cm–3, the thickness of the folded region is 0.2 μm, the Schottky metal is Wu, the width of metal is 8 μm, and the length of metal is 2 μm. We use the proposed Schottky diode as the core rectifier to simulate the rectifier circuit by using ADS, in which the SPICE parameters of the proposed Schottky diode was extract using Cadence Model Editor. When the input energy is 24.5 dBm, the energy conversion efficiency reached 75.4%. Compared with the conventional schottky diode, the energy conversion efficiency is significantly improved. The study of the proposed Schottky diodes can provide valuable reference for improving the energy conversion efficiency of microwave wireless energy transmission.
      通信作者: 李妤晨, yuchenlee2019@163.com
    • 基金项目: 其它-陕西省教育厅科学研究计划(18JK0526)
      Corresponding author: Li Yu-Chen, yuchenlee2019@163.com
    [1]

    Brandao G L F, Resende U C, Bicalho F S, Almeida G A T, Afonso M M 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Lodz, Poland, September 14–16, 2017 pp1–2

    [2]

    Bicalho F S, ResendeÚ C, BrandãoG L F, Almeida G A T 2017 IEEE 3rd Global Electromagnetic Compatibility Conference (GEMCCON) Sao Paulo, Brazil, November 8–10, 2017 pp1–5

    [3]

    Huang K, Lau V K N 2014 IEEE Trans. Wireless Commun. 13 902

    [4]

    Brown W C, Eves E E 1992 IEEE Trans Microwave Theory Tech. 40 1239

    [5]

    KhangST, LeeD J, Hwang I J, YeoT D, Yu J W 2018 IEEE Antennas Wirel. Propag. Lett. 17 155Google Scholar

    [6]

    Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans Microwave Theory Tech. 66 2433Google Scholar

    [7]

    Guo J, Zhang H X, Zhu X N 2014 IEEE Trans Microwave Thery 62 977

    [8]

    Aldrigo M, Dragoman M, Modreanu M, Povey I, Iordanescu S, Vasilache D, Dinescu A, Shanawani M, Masotti D 2018 IEEE Trans Electron Devices 65 2973Google Scholar

    [9]

    Palazzi V, DelPrete M, Fantuzzi M 2017 IEEE Microwave Mag. 18 91

    [10]

    Almoneef T S, Erkmen F, Alotaibi M A, Ramahi O M 2018 IEEE Trans Antennas Propag. 66 1714Google Scholar

    [11]

    Chen Y S, Chiu C W 2018 Int. J RF Microwave Comput. Aided Eng. 28 212Google Scholar

    [12]

    Mohan K Y N, Duraiswamy P 2016 Asia-Pacific Microwave Conference (APMC) New Delhi, India, December 5–9, 2016 pp1–4

    [13]

    Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538

    [14]

    Brown W C 1974 Proc. IEEE 62 11Google Scholar

    [15]

    Brown W C 1984 IEEE TransMicrowave Theory Tech. 32 1230Google Scholar

    [16]

    Yang Y, Li L, Li J, Liu Y L, Zhang B, Zhu H C, Huang K M 2018 IEEE Antennas Wirel. Propag. Lett. 17 684Google Scholar

    [17]

    Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans Antennas Propag. 63 3486Google Scholar

    [18]

    樊国丽, 江月松, 刘丽, 黎芳 2010 59 5374Google Scholar

    Fan G L, Jang Y S, Liu L 2010 Acta Phys. Sin. 59 5374Google Scholar

    [19]

    徐小波, 张鹤鸣, 胡辉勇 2011 60 118501Google Scholar

    Xu X B, Zhang H M, Hu H Y 2011 Acta Phys. Sin. 60 118501Google Scholar

    [20]

    Jeon W, Melngailis J, Newcomb R W 2006 Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06) Kuala Lumpur, Malaysia, January 17–19, 2006 pp1–6

    [21]

    舒斌, 戴显英, 张鹤鸣 2004 53 235Google Scholar

    Shu B, Dai X Y, Zhang H M 2004 Acta Phys. Sin. 53 235Google Scholar

    [22]

    肖文波, 刘伟庆, 吴华明, 张华明 2018 67 198801Google Scholar

    Xiao W B, Liu W Q, Wu H M, Zhang H M 2018 Acta Phys. Sin. 67 198801Google Scholar

  • 图 1  微波无线能量传输系统示意图

    Fig. 1.  Schematic diagram of microwave wireless energy transmission system.

    图 2  GeOI折叠空间电荷区肖特基二极管结构示意图

    Fig. 2.  Schematic diagram of GeOI Schottky barrier diode structure withfolded space charge region.

    图 3  HSMS-2820肖特基二极管整流电路仿真图

    Fig. 3.  The rectifier circuit simulation diagram of HSMS-2820.

    图 4  HSMS-2820肖特基二极管整流电路效率图

    Fig. 4.  The efficiency of rectifier circuit with HSMS-2820.

    图 5  使用SPICE模型的整流电路仿真图

    Fig. 5.  The rectifier circuit with SPICE model.

    图 6  使用SPICE模型构成整流电路的能量转换效率曲线

    Fig. 6.  The efficiency of rectifier circuit with SPICE model.

    图 7  GeOI折叠空间电荷区SBD的仿真结构图

    Fig. 7.  Structure diagram of GeOI folding space charge region SBD.

    图 8  不同掺杂浓度下肖特基二极管正向I-V曲线

    Fig. 8.  Forward I-V curves of Schottky diode under different doping concentrations.

    图 9  不同掺杂浓度下肖特基二极管反向I-V曲线

    Fig. 9.  Reverse I-V curves of Schottky diode under different doping concentrations.

    图 10  不同掺杂浓度下部分耗尽肖特基二极管C-V曲线

    Fig. 10.  C-V curves of partially depleted Schottky diode at different doping concentrations.

    图 11  不同外延层厚度、不同外延层浓度下部分耗尽肖特基二极管C-V曲线

    Fig. 11.  C-V curves of partially depleted Schottky diode with different epitaxial layer thicknesses and different doping concentrations.

    图 12  全耗尽GeOI折叠空间电荷区SBD与传统结构SBD的C-V曲线

    Fig. 12.  C-V curves of fully depleted GeOI folded space charge region SBD and traditional structure SBD.

    图 13  全耗尽GeOI折叠空间电荷区肖特基二极管电场图 (a) 纵向电场分布; (b) 横向电场分布

    Fig. 13.  The electric field distribution of fully depleted GeOI folded space charge region Schottky diode: (a) Vertical electric field; (b) transverse electric field.

    图 14  全耗尽GeOI折叠空间电荷区肖特基二极管正向与反向I-V曲线

    Fig. 14.  The forward and reverse I-V curves of fully depleted GeOI folded space charge region Schottky diode.

    图 15  全耗尽GeOI折叠空间电荷区肖特基二极管的C-V曲线

    Fig. 15.  The C-V curve of fully depleted GeOI folded space charge region SBD.

    图 16  全耗尽GeOI折叠空间电荷区肖特基二极管与HSMS-2820肖特基二极管能量转换效率对比图

    Fig. 16.  Comparison of energy conversion efficiency between fully depleted GeOI folded space charge region SBD and HSMS-2820 SBD.

    表 1  HSMS-2820肖特基二极管SPICE参数表

    Table 1.  The SPICE parameters of HSMS-2820.

    参数单位HSMS2820参数单位HSMS2820
    $ {B}_{\mathrm{v}} $V15$ {C}_{\mathrm{j}0} $pF0.7
    $ {E}_{\mathrm{G}} $eV0.69 $ {I}_{\mathrm{B}\mathrm{V}} $A1 × 10-4
    $ {I}_{\mathrm{S}} $A2.2 × 10-8 N1.08
    $ {R}_{\mathrm{S}} $$\Omega $6.0$ {P}_{\mathrm{B}} $V0.65
    $ {P}_{\mathrm{T}} $2M0.5
    下载: 导出CSV

    表 2  全耗尽GeOI折叠空间电荷区肖特基二极管SPICE参数表

    Table 2.  The SPICE parameters of C-V curve of fully depleted GeOI folded space charge region SBD.

    参数单位全耗尽GeOI折叠空间电荷区肖特基二极管
    $ {B}_{\mathrm{v}} $V18
    $ {C}_{\mathrm{j}0} $pF0.3
    $ {E}_{\mathrm{G}} $eV0.69
    $ {I}_{\mathrm{B}\mathrm{V}} $A3 × 10-5
    $ {I}_{\mathrm{S}} $A1.12 × 10-10
    N1.08
    $ {R}_{\mathrm{S}} $$\Omega $6.0
    $ {P}_{\mathrm{B}} $V0.2
    $ {P}_{\mathrm{T}} $2
    M0.5
    下载: 导出CSV
    Baidu
  • [1]

    Brandao G L F, Resende U C, Bicalho F S, Almeida G A T, Afonso M M 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Lodz, Poland, September 14–16, 2017 pp1–2

    [2]

    Bicalho F S, ResendeÚ C, BrandãoG L F, Almeida G A T 2017 IEEE 3rd Global Electromagnetic Compatibility Conference (GEMCCON) Sao Paulo, Brazil, November 8–10, 2017 pp1–5

    [3]

    Huang K, Lau V K N 2014 IEEE Trans. Wireless Commun. 13 902

    [4]

    Brown W C, Eves E E 1992 IEEE Trans Microwave Theory Tech. 40 1239

    [5]

    KhangST, LeeD J, Hwang I J, YeoT D, Yu J W 2018 IEEE Antennas Wirel. Propag. Lett. 17 155Google Scholar

    [6]

    Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans Microwave Theory Tech. 66 2433Google Scholar

    [7]

    Guo J, Zhang H X, Zhu X N 2014 IEEE Trans Microwave Thery 62 977

    [8]

    Aldrigo M, Dragoman M, Modreanu M, Povey I, Iordanescu S, Vasilache D, Dinescu A, Shanawani M, Masotti D 2018 IEEE Trans Electron Devices 65 2973Google Scholar

    [9]

    Palazzi V, DelPrete M, Fantuzzi M 2017 IEEE Microwave Mag. 18 91

    [10]

    Almoneef T S, Erkmen F, Alotaibi M A, Ramahi O M 2018 IEEE Trans Antennas Propag. 66 1714Google Scholar

    [11]

    Chen Y S, Chiu C W 2018 Int. J RF Microwave Comput. Aided Eng. 28 212Google Scholar

    [12]

    Mohan K Y N, Duraiswamy P 2016 Asia-Pacific Microwave Conference (APMC) New Delhi, India, December 5–9, 2016 pp1–4

    [13]

    Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538

    [14]

    Brown W C 1974 Proc. IEEE 62 11Google Scholar

    [15]

    Brown W C 1984 IEEE TransMicrowave Theory Tech. 32 1230Google Scholar

    [16]

    Yang Y, Li L, Li J, Liu Y L, Zhang B, Zhu H C, Huang K M 2018 IEEE Antennas Wirel. Propag. Lett. 17 684Google Scholar

    [17]

    Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans Antennas Propag. 63 3486Google Scholar

    [18]

    樊国丽, 江月松, 刘丽, 黎芳 2010 59 5374Google Scholar

    Fan G L, Jang Y S, Liu L 2010 Acta Phys. Sin. 59 5374Google Scholar

    [19]

    徐小波, 张鹤鸣, 胡辉勇 2011 60 118501Google Scholar

    Xu X B, Zhang H M, Hu H Y 2011 Acta Phys. Sin. 60 118501Google Scholar

    [20]

    Jeon W, Melngailis J, Newcomb R W 2006 Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06) Kuala Lumpur, Malaysia, January 17–19, 2006 pp1–6

    [21]

    舒斌, 戴显英, 张鹤鸣 2004 53 235Google Scholar

    Shu B, Dai X Y, Zhang H M 2004 Acta Phys. Sin. 53 235Google Scholar

    [22]

    肖文波, 刘伟庆, 吴华明, 张华明 2018 67 198801Google Scholar

    Xiao W B, Liu W Q, Wu H M, Zhang H M 2018 Acta Phys. Sin. 67 198801Google Scholar

计量
  • 文章访问数:  15521
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-05-20

/

返回文章
返回
Baidu
map