搜索

x
中国物理学会期刊

Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究进展

Recent progress on Ⅳ-Ⅵ compound semiconductor heterojunction two-dimensional electron gas

CSTR: 32037.14.aps.68.20191074
PDF
HTML
导出引用
  • 半导体异质结在探索新奇物理和发展器件应用等方面一直发挥着不可替代的作用. 得益于其特有的能带性质, 相对较窄的带隙和足够大的自旋轨道耦合相互作用, Ⅳ-Ⅵ族化合物半导体异质结不仅在红外器件应用方面具有重要的研究价值, 而且在拓扑绝缘体和自旋电子学等前沿领域引起了广泛的关注. 尤为重要的是, 在以CdTe/PbTe为代表的Ⅳ-Ⅵ族化合物半导体异质结界面上发现了高浓度、高迁移率的二维电子气. 该电子气的形成归因于Ⅳ-Ⅵ族化合物半导体异质结独特的扭转界面. 进一步的研究表明, 该二维电子气体系不仅对红外辐射有明显响应, 而且它还表现出狄拉克费米子的性质. 本文系统综述了近年来Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究取得的主要进展. 首先对Ⅳ-Ⅵ族化合物半导体异质结扭转界面二维电子气的形成机理进行了介绍; 然后讨论该二维电子气在低温强磁场下的输运性质, 并分析了它的拓扑性质以及在自旋器件方面的应用前景; 最后, 展示了基于该二维电子气研制的中红外光电探测器.

     

    Semiconductor heterojunctions play a crucial role in exploring novel physics and developing advanced devices. Due to the characteristic electronic band structure, such as the narrow bandgap and the large spin-orbital interaction, the Ⅳ-Ⅵ compound semiconductor heterojunctions are not only of great importance to infrared detectors, but also arouse extensively concern in the frontier fields of physics, like topological insulators (TIs) and spintronics. Most excitingly, the two-dimensional electron gas (2DGE) with high electron density and high mobility is revealed at the interface of the typical Ⅳ-Ⅵ compound semiconductor CdTe/PbTe heterojunction, the formation of which is attributed to the unique twisted interface of the Ⅳ-Ⅵ compound semiconductor heterojunctions. Further researches demonstrate that the 2DEG system boasts prominent infrared photoresponse and is of Dirac fermion nature. This review presents the major progress in Ⅳ-Ⅵ compound semiconductor heterojunction 2DEG in the past decades. First, the formation mechanism of the twisted heterojunction 2DEG is discussed based on both theoretical and experimental results. By molecular beam epitaxy the novel lattice-mismatch heterostructure CdTe/PbTe with sharp interface was obtained and first-principle calculations revealed that the alternately changed atomic layer spacing played a crucial role in the formation of 2DEG. High resolution transmission electron microscope image of the interface clearly demonstrated the twisted interfacial structure and showed that the interfacial Te-sharing bonding configuration provided the excessive electrons. Second, we show the transport properties of the 2DEG under the condition of low temperature and high magnetic field, and the unambiguous π Berry phase of quantum oscillations indicate that the 2DEG is of Dirac fermion nature and demonstrate its potential for realizing two-dimensional TI and spintronic device. Moreover, the 2DEG exhibits quite high mobility, making it candidate for high electron mobility transistor. At last, the high-performance mid-infrared photodetector is displayed, which is built based on the typical Ⅳ-Ⅵ compound semiconductor CdTe/PbTe heterojunction. The most exciting feature of the detector is that it is able to achieve high-speed response with satisfying detectivity while working at room temperature, which could be a complementation to state-of-art mid-infrared photodetectors. In summary, the Ⅳ-Ⅵ compound semiconductor heterojunctions are of great significance not only in fundamental physics but also in device applications, and this review could provide the researchers with the main results in the field.

     

    目录

    /

    返回文章
    返回
    Baidu
    map