搜索

x
中国物理学会期刊

HD+分子的强场光解离动力学及其量子调控的理论研究

Theoretical study of dissociation dynamics of HD+ and its quantum control with an intense laser field

CSTR: 32037.14.aps.68.20190400
PDF
HTML
导出引用
  • 利用精确求解原子核与电子耦合运动的三维含时量子波包法, 理论研究了HD+分子在强激光场中的光解离动力学, 并给出了量子调控HD+分子光解离通道的理论方案. 通过分析HD+分子在不同的初始振动态和激光场强度下的光解离动力学过程及其解离核动能谱, 得出了HD+分子的光解离机理及其随激光场强度的变化规律. 研究结果表明, 利用激光场的强度可以实现HD+分子光解离通道的量子调控. 当激光场强度I1 = 4.0 × 1013 W/cm2时, HD+分子的光解离主要是通过净单光子吸收解离和净双光子吸收解离; 当激光场强度增大到I2 = 2.0 × 1014 W/cm2时, 直接双光子吸收解离取代了净单光子吸收解离, 净双光子吸收解离的比重也下降了.

     

    The dissociation dynamics of HD+ molecule in an intense field is investigated by using an accurate three-dimensional time-dependent wave packet approach. When the 790-nm laser pulse interacts with HD+ molecule, the lowest electronic 1sσ and 2pσ states are coupled. Due to the existence of the permanent electric dipole moment, the transitions in HD+ molecule involve the direct absorption of an odd and even number of photons, thereby opening different pathways for dissociation. The model of the photon-dressed states is presented to analyze the possible dissociation pathways of HD+ molecule. The laser-induced dissociation of HD+ molecule is mainly composed of the four pathways: the direct one-photon absorption, the net two-photon absorption, the direct two-photon absorption, and the direct two-photon absorption. To reveal the dissociation mechanism of HD+ molecule, the kinetic energy resolved spectra are calculated at the given laser intensities. It is found that the dissociation pathways are strongly dependent on laser intensity, especially for the net one-photon absorption dissociation and direct two-photon absorption dissociation. With further research, the dissociation pathways of HD+ are controlled by regulating the intensity of laser pulse. At a laser intensity of 4.0 × 1013 W/cm2, the kinetic energy resolved spectrum for the vibrational state ν = 3 includes the contributions from the net two-photon absorption dissociation and the direct two-photon absorption dissociation. For the vibrational state ν = 6, HD+ molecule is preferentially dissociated via the net one-photon absorption. However, the dissociation mechanism of HD+ molecule at the vibrational states ν = 3 and ν = 6 have significant changes as the laser intensity increases to 2.0 × 1014 W/cm2. For the vibrational state ν = 3, the branching ratio between the dissociation pathway of the net two-photon absorption and that of the direct two-photon absorption has a dramatic change with the increase of laser intensity. Compared with the kinetic energy resolved spectra at laser energy of 4.0 × 1013 W/cm2, the height of the dissociation peak from the net two-photon absorption decreases, and that of the direct two-photon absorption increases at laser intensity of 2.0 × 1014 W/cm2. For the vibrational state ν = 6, the dissociation process of the net one-photon absorption almost disappears at laser intensity of 2.0 × 1014 W/cm2, and it is replaced by the dissociation pathway of the direct two-photon absorption.

     

    目录

    /

    返回文章
    返回
    Baidu
    map