搜索

x
中国物理学会期刊

第一性原理对氮掺杂石墨烯作为锂-空电池阴极材料还原氧分子的机理研究

First-principles study of reduction mechanism of oxygen molecule using nitrogen doped graphene as cathode material for lithium air batteries

CSTR: 32037.14.aps.68.20190181
PDF
HTML
导出引用
  • 采用第一性原理, 研究了不同浓度的氮掺杂石墨烯还原氧分子的机理. 结果表明, 掺杂氮原子以后, 氧分子的吸附能增大, 获得的电荷增多, O—O键长变长, 说明氮掺杂石墨烯增强了对氧分子的还原能力. 进一步分析发现, 氧分子吸附之后, 氮原子和氧分子均从碳原子上获得电荷, 氮原子同时也向氧分子转移电荷, 从而使氧分子与基底的相互作用增强. 另外, 通过对比不同浓度的氮原子掺杂, 发现3.13 at%的氮原子掺杂比例对氧分子的还原性能最好.

     

    Lithium-oxygen battery possesses an extremely high theoretical energy density ( \approx 3500 W·h·kg–1), and is an ideal next-generation energy storage system. The ideal operation of lithium-oxygen batteries is based on the electrochemical formation (discharge) and decomposition (charge) of lithium peroxide (Li2O2). At the beginning of the discharge, oxygen is reduced on the electrode, forming an oxygen radical (\rm O^-_2 ). The \rm O^-_2 successively combines with an Li ion, forming the metastable LiO2. The LiO2 may subsequently undergo two different reaction pathways: a chemical disproportionation and a continuous electrochemical reduction, thereby resulting in the formation of Li2O2. Therefore, the oxygen reduction reaction (ORR) is an important step in the discharge process. Studies have shown that graphene is considered as the most promising cathode material for non-aqueous lithium-oxygen batteries. Moreover, it is found that nitrogen-doped graphene has higher electrocatalytic activity than intrinsic graphene for the ORR. However, up to now, the mechanism of improving the ORR for nitrogen-doped graphene is still unclear, and the effects of different N-doping concentrations on the ORR have not been reported. In this work, on the basis of the first-principles calculations, the reduction mechanism of O2 molecule by nitrogen-doped graphene with different N concentrations is studied. Results show that after doping N atoms, the adsorption energy of O2 molecules increases, the O—O bond length is elongated, and the transferred charge increases, which indicates that nitrogen-doped graphene enhances the reduction ability of O2 molecule. Bader charge analysis shows that both N atom and O2 molecule obtain charges from C atom, and N atom also provides charges for O2 molecule, which is consistent with the electronegativity of carbon, nitrogen and oxygen. This charge transfer results in the stronger interaction between the O2 molecule and the substrate, and can reveal the reason why nitrogen-doped graphene can improve the ORR. In addition, it is found that the reduction ability of O2 molecule is best when the N-doping ratio is 3.13 at%. It is hoped that this work will play a guiding role in the synthesizing the nitrogen-doped graphene materials, and will be helpful in optimizing the cathode materials of lithium-oxygen batteries.

     

    目录

    /

    返回文章
    返回
    Baidu
    map