搜索

x
中国物理学会期刊

基于共心球透镜的多尺度广域高分辨率计算成像系统设计

CSTR: 32037.14.aps.68.20182229

Design of monocentric wide field-of-view and high-resolution computational imaging system

CSTR: 32037.14.aps.68.20182229
PDF
HTML
导出引用
  • 针对实时广域高分辨率成像需求, 充分利用具有对称结构的多层共心球透镜视场大且各轴外视场成像效果一致性好的特点, 设计基于共心球透镜的多尺度广域高分辨率计算成像系统. 该系统基于计算成像原理, 通过构建像差优化函数获得光学系统设计参数, 结合球形分布的次级相机阵列进行全局性优化, 提高系统性能的同时有效简化光学设计过程、降低系统设计难度. 系统稳定性测试结果表明, 该成像系统的MTF (modulation transmission function)值在截止频率处接近衍射极限, 弥散斑均方根恒小于探测器像元尺寸, 整机实景实时成像效果良好, 无视觉可见畸变. 该系统不仅有效解决了传统成像中广域和高分辨率成像矛盾的问题, 而且为计算光学成像系统设计奠定了一定研究基础.

     

    Imaging systems with a wide field-of-view (FOV) and high-resolution, which can provide abundant target information, are always desired in various applications including target detection, environment monitoring, marine rescue, etc. Various approaches to realizing the wide FOV and high-resolution imaging have been developed, for example, fisheye lens imaging system, and panoramic optical annular staring imaging technology. In these single aperture imaging systems, the maximum resolution and FOV are determined by either the geometric aberration or the diffraction limit of the optics. Multi-scale monocentric ball-lens imaging system is of particular importance due to its high real-time ability, small image distortion, and wide FOV. The complete geometrical symmetry of multilayer monocentric ball-lens makes it possible to compensate for the geometric aberration with no need of additional assistance. However, the major problem in designing imaging system based on multi-scale monocentric ball-lens is that there are too many variables needed to be set for a ball-lens imaging structure and the problems of high time cost and computation complexity.For simplifying the design process, in this manuscript, we apply the computational imaging theory to optical system design, thereby developing a geometric aberration optimization function to determine the initial values of the desired system by the sound computation rather than repetitive iterations by using the optical system design software. Function development starts from the aberration theory. Since the monocentric ball lens does not bring in the aberrations relating to FOV, only spherical aberration and chromatic aberration are needed to be considered. The optimization function is then founded according to the principle of minimizing the spherical aberration and chromatic aberration. And then with the determined initial parameters, ZEMAX is employed to globally optimize the residual geometric aberrations, which is time-efficient. After required parameters are finally determined, the system performance is evaluated via the modulation transmission function, the spot diagram distribution, the field-curve and distortion value and the ray fan curve. Favorable results are obtained, which demonstrates the feasibility of the developed system designing approach. Imaging results from the finished prototype system are pretty satisfactory with wide FOV and high resolution which is captured through only one frame. The multi-scale wide FOV and high-resolution computation imaging system not only solves the conflict between the wide FOV and high resolution, but also provides the research foundation for computational imaging.

     

    目录

    /

    返回文章
    返回
    Baidu
    map