搜索

x
中国物理学会期刊

基于主被动分解法的微纳激光混沌系统的复用同步实现

CSTR: 32037.14.aps.74.20241659

Multiplexing synchronization implementation of micro-nano laser chaotic system based on active-passive decomposition method

CSTR: 32037.14.aps.74.20241659
PDF
HTML
导出引用
  • 纳米激光器(NL)是实现光集成的重要光学元件, 近年来成为研究热点之一. 然而, 对于NL在混沌同步方向上的研究仍较为稀少. 本文提出一种基于NL的双路激光混沌复用系统, 并详细研究了其同步性能. 研究中还创新性地引入了主被动分解法, 通过主动和被动信号的分解实现高效的信号处理和复用. 具体而言, 通过建立速率方程模型, 探究了NL两个关键参数(Purcell因子F、自发辐射耦合因子\beta )、系统参数、单参数失配以及多参数同时失配对同步性能的影响. 结果表明, 通过合理选择系统的参数配置, 两主激光器可以在较大的参数范围内保持较低的相关性, 同时确保主从激光器间保持高品质的混沌同步, 满足混沌复用系统的条件. 此外, 单参数失配对主激光器间同步性的影响具有差异性, 但对配对激光器的同步性影响较小; 多参数失配时, 系统仍能在广泛的参数失配范围内满足两主激光器混沌输出的“伪正交性”要求. 本文结果不仅验证了所提系统的可行性, 还充分体现了主动被动分解法在推动NL混沌同步研究中的重要价值, 为该领域的发展提供了新思路.

     

    Nanolaser (NL), as an important optical source device, has a significant influence on photonic integrated circuits and has become a research hotspot in recent years. In this work, the synchronization performance of a dual-channel laser chaotic multiplexing system is investigated based on NLs and an active-passive decomposition is used to enhance signal processing and multiplexing efficiency. By establishing a rate equation model, the synchronization characteristics of the system are analyzed, with a focus on two key parameters— Purcell factor (F ) and spontaneous emission coupling factor (β )—as well as the effects of system parameters, single-parameter mismatch, and multi-parameter mismatch. Numerical simulations show that with appropriate parameter configurations, the two master NLs can maintain low correlation, ensuring the "pseudo-orthogonality" of chaotic signals while achieving high-quality chaotic synchronization with their paired slave NLs. In this work it is found that both the Purcell factor (F ) and the spontaneous emission coupling factor (β ) significantly affect the synchronization performance of the system, and the optimal parameter ranges for achieving high-quality synchronization are identified. Additionally, the effects of feedback strength and frequency detuning are explored, revealing that frequency detuning plays a more critical role in the synchronization between the master NLs. The influence of parameter mismatches on system synchronization performance is also emphasized. The system exhibits robustness against single-parameter mismatch and has minimum influence on master-slave synchronization quality. However, multi-parameter mismatch gives rise to more complex effects. Compared with the traditional semiconductor laser systems, this system can maintain “pseudo-orthogonality” over a wider range of parameters, thus achieving higher security and lower channel interference. This research lays a theoretical foundation for chaos synchronization based on NLs and provides new insights for designing secure, stable, and efficient optical communication systems.

     

    目录

    /

    返回文章
    返回
    Baidu
    map