搜索

x
中国物理学会期刊

不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素

CSTR: 32037.14.aps.74.20241550

Characteristics and influencing factors of excited oxygen atom generation in secondary streamer discharge of mixed gases with different oxygen concentrations

CSTR: 32037.14.aps.74.20241550
PDF
HTML
导出引用
  • 流注放电被应用于消毒杀菌、臭氧生产等领域, 其中二次流注放电过程对臭氧有效生产持续时间和效率影响明显, 然而氧浓度对二次流注放电过程及目标产物产量的影响还不清楚. 为此, 开发不同氧浓度下针-板电极二次流注发展过程的流体分析模型, 解决高氧浓度下流注放电模拟的非物理分支(branch)问题, 分析氧浓度对二次正流注光发射特性的影响, 研究不同氧浓度下的阴极转移电荷量和激发态氧原子 \rm O(^3P) 产量, 并与实验数据进行对比. 结果表明, 氧浓度由20%增加至90%后, 二次流注放电通道电子密度平均降低90%, 电场强度变化小于10%, 单次放电持续时间缩短77%, 激发态氧原子 \rm O(^3P) 单位能量产率上升64%, 同时放电时间缩短会使产量降低50%, 但激发态氧原子 \rm O(^3P) 单位能量产率的提高优于单次降产量. 氧浓度增大引发氧分子二、三体吸附效应增强和电子密度下降是单次放电产量下降的原因, 电子与氧分子碰撞概率提升是单位能量产率上升的原因.

     

    Streamer discharge has been widely used in fields of sterilization, disinfection, ozone generation, etc. The secondary discharge process significantly affects the effective ozone production duration and efficiency. However, the mechanism of oxygen concentration affecting secondary discharge characteristics and the yield of target products is still unclear. To address this issue, a fluid-based analysis model of the secondary positive streamer discharge process between needle-plate electrodes under varying oxygen concentrations is developed in this work. This model considers the radial electric field and resolves potential non-physical branching issues that may arise in discharge simulations at high oxygen concentrations. In this work, the effect of oxygen concentration on the optical emission characteristics of secondary positive streamers is examined. The optical emission intensity, cathode charge transfer, and the yields of excited-state oxygen atoms (O(3P)) under different oxygen concentrations are investigated and compared with experimental data. The results show that when the oxygen concentration increases from 20% to 90%, the light emission intensity of the secondary discharge decreases by about 0.2%. At the same time, the average electron density in the discharge channel decreases by 90%, the change of electric field intensity is less than 10%, and the duration of single discharge duration is shortened by 77%. Under these conditions, the proportion of O(3P) yield originating from the primary discharge increases from 20% to 38%, and the unit energy yield of excited-state oxygen atoms O(3P) rises by 64%. Although the reduction in discharge duration results in a 50% decrease in absolute O(3P) yield, the increase in unit energy yield far compensates for the decrease in single-discharge yield. The single-discharge yield decreases with oxygen concentration increasing due to the enhanced two- and three-body adsorption effects of oxygen molecules, which reduce the electron density. Additionally, the increased collision probability between electrons and oxygen molecules further affects these characteristic changes.

     

    目录

    /

    返回文章
    返回
    Baidu
    map