搜索

x
中国物理学会期刊

基于运算放大器的超导纳米线单光子探测器低温直流耦合读出电路

Cryogenic DC-coupled readout electronics for high-speed superconducting nanowire single-photon detectors based on a commercial operational amplifier

CSTR: 32037.14.aps.73.20240398
PDF
HTML
导出引用
  • 超导纳米线单光子探测器(SNSPD)具有高计数率、高探测效率和低暗计数等优点, 在光量子通信、光量子计算、激光测距与成像等领域发挥着重要作用. SNSPD的最大计数率(探测速度)会受前级读出电路的影响, 为了提升最大计数率, 通常需要使用一个宽带宽的低温直流耦合读出电路. 本文报道了基于商用高速运算放大芯片OPA855搭建的SNSPD低温直流耦合放大读出电路, 系统表征了该电路从室温300 K到低温4.2 K下的性能参数. 通过提升OPA855的工作电压, 解决了电路在低温下带宽损失的问题. 进一步, 将OPA855放大电路安装在40 K温区, 使用其实现了SNSPD探测性能的实验评估. 相对于常规室温交流耦合电路, SNSPD的最大计数率约提升了1.3倍. 本研究可为OPA855芯片在高速SNSPD等低温领域提供相关参考信息.

     

    Superconducting nanowire single-photon detectors (SNSPD) have the advantages of high maximal counting rate (MCR), high detection efficiency, and low dark count rate. They play an important role in the fields of optical quantum communication, optical quantum computing, laser ranging, and imaging. The MCR (i.e. detection speed) of SNSPD can be affected by the front-end readout circuit. To increase MCR, it is usually necessary to use a cryogenic DC-coupled readout circuit with a broad bandwidth. This study reports an SNSPD cryogenic DC-coupled amplification readout circuit based on a commercial high-speed operational amplifier chip OPA855. We systematically characterize its performance parameters in a temperature range from a room temperature of 300 K to a low temperature of 4.2 K. We address the problem of bandwidth loss of the circuit in a low-temperature environment by increasing the operating voltage of the OPA855 chip. For example, at 40 K, the operating voltage increases from ±2.5 V to ±4.9 V, and the quiescent current is about 8 mA, which is equivalent to a power consumption of 78 mW; meanwhile, the gain of this readout circuit is 16.7 dB, and the –3 dB cutoff bandwidth is ~2.7 GHz. We further install a cryogenic DC-coupled readout circuit based on the OPA855 amplifier at 40 K and characterize the performance parameters of the SNSPD at 2.2 K, such as the switching current, system detection efficiency, and MCR. The comparison with the conventional AC-coupled readout circuit at room temperature shows that the MCR increases about 1.3 times after using the DC-coupling circuit. Our study provides the interesting information about the OPA855 amplifier’s performance at low temperatures which facilitates its application in cryogenic environments and related fields.

     

    目录

    /

    返回文章
    返回
    Baidu
    map