搜索

x
中国物理学会期刊

简便合成相可调的CsPbBr3-Cs4PbBr6复合纳米晶及相转变过程的原位研究

CSTR: 32037.14.aps.73.20240247

Facile synthesis of phase-adjustable CsPbBr3-Cs4PbBr6 composite nanocrystals and in-situ study of phase transformation process

CSTR: 32037.14.aps.73.20240247
PDF
HTML
导出引用
  • 通过改变四正辛基溴化铵(TOABr)用量和Cs/Pb摩尔比, 在室温下采用一步单溶剂法成功制备出单斜相CsPbBr3和六方相Cs4PbBr6两种相结构可调的钙钛矿纳米晶. 研究发现, 当TOABr浓度较低时(Cs/Pb/Br = 1∶1∶4), 体系中主要生成了单斜相的CsPbBr3纳米立方块, 该立方块主要经历了快速成核、尺寸分布聚焦生长和Ostwald熟化生长3个阶段, 最终尺寸为(11.8 ± 1.6) nm. 随着TOABr用量的增加, Br与Pb2+结合形成PbBr3和少量的PbBr42–络合物, 两种络合物相互竞争. 在成核期和生长早期体系中PbBr3占主导, 因而形成大量的CsPbBr3纳米晶, 随着反应的进行, 体系中过量的Br会与纳米晶中的Pb相互作用, 导致CsPbBr3纳米晶部分转变为具有六边形形状的Cs4PbBr6纳米晶, 同时PbBr42–络合物的存在使得Cs4PbBr6纳米晶继续长大, 最终形成以CsPbBr3为发光中心的CsPbBr3-Cs4PbBr6复合纳米晶. 只有当TOABr用量为0.32 mmol时所得的CsPbBr3-Cs4PbBr6 复合纳米晶其光学性能和稳定性表现最佳. 在此浓度下改变Cs/Pb摩尔比只影响CsPbBr3纳米晶和Cs4PbBr6纳米晶在体系中的相对含量, 当Cs4PbBr6纳米晶含量较高时其荧光强度和稳定性相对较差. 该工作对低温可控合成高效稳定的铯铅卤钙钛矿纳米晶提供一定思路.

     

    All-inorganic cesium lead halide perovskites have shown great potential applications in optoelectronic field due to their fascinating optical properties. Although perovskite materials have achieved great success in various fields, their inherent ionic properties and high dynamic surface properties have led to their poor stability, hindering their applications. The preparation of CsPbBr3-Cs4PbBr6 nanocrystals has proven to be an effective strategy to enhance their photoluminescence properties and stability. Herein, we report an easy synthesis of CsPbBr3-Cs4PbBr6 nanocrystals with a diphase structure at room temperature by using Cs-OA, Pb-OA and TOABr as precursors in toluene. It is found that the phase transformation and the relative composition between CsPbBr3 and Cs4PbBr6 are dependent on the concentration of TOABr and the ratio of Cs/Pb. The in-situ PL experiments reveal that the formation of ~12 nm CsPbBr3 nanocubes experiences the fast nucleation, the focusing growth of size-distribution in early growth stage and Ostwald ripening growth in the later stage at a TOABr concentration of 0.16 mmol. With the increase of concentration of TOABr or molar ratio of Cs/Pb > 1 (Cs/Pb < 1), PbBr42– complex and PbBr3 complex can coexist and compete with each other in toluene, and the CsPbBr3 nucleations dominate in the early stage, then CsPbBr3-Cs4PbBr6 nanocomposites are gradually formed on CsPbBr3 nucleations as photoluminescence centers due to the continuous generation of PbBr42– complex between TOABr and Pb2+. The relative composition of Cs4PbBr6 in CsPbBr3-Cs4PbBr6 nanocomposites can be improved from 4% to 85% with the concentration of TOABr increasing or Cs/Pb < 1. The optimized CsPbBr3-Cs4PbBr6 composite nanocrystals possess high PLQY and stability. Our work provides an understanding of the mechanism of phase transformation in cesium lead halide perovskite materials.

     

    目录

    /

    返回文章
    返回
    Baidu
    map