搜索

x
中国物理学会期刊

功能化原子力显微镜在纳米电介质材料性能研究中的应用进展

Progress of application of functional atomic force microscopy in study of nanodielectric material properties

CSTR: 32037.14.aps.71.20221462
PDF
HTML
导出引用
  • 随着电子元件向微型化、柔性化、智能化发展, 迫切需要介电材料具有更优异的介电性能. 原子力显微镜作为一种具有纳米级高分辨率的测量仪器, 在纳米电介质的研究中表现出独特的优势, 功能化原子力显微镜的诞生更是为纳米电介质微区性质的研究做出重要贡献. 本文综述了原子力显微镜、静电力显微镜、开尔文探针力显微镜、压电响应力显微镜和原子显微镜-红外光谱在研究介电材料纳米区域的微观形貌、界面结构、电畴变化和电荷分布方面的最新研究进展, 并对现有研究中存在的问题和未来可能的发展方向进行了讨论.

     

    The rapid development of the electrical and electronic industry requires components with miniaturization, flexibility, and intelligence. Dielectric materials, as important materials for the preparation of electronic components, are required to have excellent dielectric properties such as high breakdown electric field, high energy storage density and low dielectric loss. Owing to the lack of ultra-high resolution characterization tools, the research on the improvement of dielectric material properties stopped at a macroscopic level in the past. Atomic force microscopy, a measurement instrument which possesses a nanoscale high resolution, shows unique advantages in the study of nanodielectrics, and the advent of functional atomic force microscopy has made important contributions to characterization of the electrical, optical, and mechanical properties of nano-dielectric micro-regions. In this paper, we review the progress of atomic force microscopy, electrostatic force microscopy, Kelvin probe force microscopy, piezoelectric response force microscopy and atomic microscopy-infrared spectroscopy in the study of nanodielectric applications. Firstly, their structures and principles are introduced; secondly, their recent research progress of studying the microscopic morphology, interfacial structure, domain behavior and charge distribution in the nanometer region of dielectric materials is presented, and finally, the problems in the existing research and possible future research directions are discussed.

     

    目录

    /

    返回文章
    返回
    Baidu
    map