搜索

x
中国物理学会期刊

可搬运锶光晶格钟系统不确定度的评估

CSTR: 32037.14.aps.70.20201204

Evaluation of systematic uncertainty for transportable 87Sr optical lattice clock

CSTR: 32037.14.aps.70.20201204
PDF
HTML
导出引用
  • 可搬运光学原子钟在科学研究和工程应用中具有重要意义. 本文测量了可搬运87Sr光晶格钟系统的主要频移, 包括黑体辐射频移、碰撞频移、晶格光交流斯塔克频移、二阶塞曼频移等. 首先实验上测量了磁光阱腔体表面的温度分布, 分析了不同热源对原子团的影响, 得到黑体辐射总的相对频移修正量为50.4 × 10–16, 相对不确定度为5.1 × 10–17. 然后利用分时自比对方法, 评估了碰撞频移、晶格光交流斯塔克频移和二阶塞曼频移. 结果表明, 由黑体辐射引起的频移量最大, 晶格光交流斯塔克频移的不确定度最大, 系统总的相对频移修正量为58.8 × 10–16, 总不确定度为2.3 × 10–16. 该工作为可搬运87Sr光晶格钟之后的性能提升和应用提供了条件.

     

    Transportable optical clocks have broad applications in scientific research and engineering. Accurate evaluation of systematic uncertainty for the transportable 87Sr optical lattice clock is a prerequisite for the practical realization of the optical clock. Four main frequency shifts of the 87Sr optical lattice clock are measured, i.e. blackbody-radiation (BBR) shift, collision shift, lattice alternating current (AC) Stark shift, and second-order Zeeman shift. Firstly, by measuring the temperature distribution on the surface of the magneto-optical trap cavity and analyzing the influence of different heat sources on atomic cloud, the BBR shift correction is measured to be 50.4 × 10–16 Hz with an uncertainty of 5.1 × 10–17. Secondly, the time-interleaved self-comparison method is used under high and low atom density condition to evaluate the collision shift of the system. The correction of collision shift is 4.7 × 10–16 with an uncertainty of 5.6 × 10–17. Thirdly, the lattice AC Stark shift is evaluated by the time-interleaved self-comparison method. By measuring the dependence of the lattice AC Stark shift on the wavelength of the lattice light, the magic wavelength is measured to be 368554393(78) MHz. As a result, the lattice AC Stark shift correction is 3.0 × 10–16 with an uncertainty of 2.2 × 10–16. Finally, using the time-interleaved self-comparison technology, the second-order Zeeman frequency shift is evaluated by measuring the fluctuation of the difference in center frequency between the m_\textF = + 9 / 2 \to m_\textF = + 9 / 2 polarization spectrum and m_\textF = - 9 / 2 \to m_\textF = - 9 / 2 polarization spectrum. The correction of second-order Zeeman shift is calculated to be 0.7 × 10–16, and corresponding uncertainty is 0.2 × 10–17. Experimental results indicate that the frequency shift correction due to the blackbody radiation is the largest, while the uncertainty caused by the lattice AC Stark effect is the largest in the evaluated shifts. The systematic shift is 58.8 × 10–16, the total uncertainty is 2.3 × 10–16. In the next work, the magneto-optical trap cavity will be placed in a blackbody-radiation cavity to reduce the blackbody-radiation shift. The uncertainty of the collision shift will be reduced by increasing the beam waist of the lattice and reducing the potential well depth of the lattice, which will reduce the density of atoms. What is more, the light source for the optical lattice after spectral filtering will be measured by an optical frequency comb locked to the hydrogen clock signal to reduce the uncertainty of the lattice AC Stark frequency shift. The systematic uncertainty is expected to be on the order of 10–17. The evaluation of the systematic uncertainty for the transportable 87Sr optical lattice clock lays the foundation for the practical application.

     

    目录

    /

    返回文章
    返回
    Baidu
    map