搜索

x
中国物理学会期刊

与XY双自旋链耦合的双量子比特系统的关联性与相干性

Correlation and coherence for two-qubit system coupled to XY spin chains

CSTR: 32037.14.aps.67.20180812
PDF
导出引用
  • 研究了双量子比特系统中在具有Dzyaloshinsky-Moriya相互作用的独立XY自旋链环境下的相干性与关联性动力学.推导出相干性与关联性的演化规律.发现在自旋链的临界点附近,当tt0时,系统相干性的演化与经典关联完全相同;而在tt0时,则与量子关联完全相同;在t0时刻,量子关联突变为经典关联.

     

    Quantum coherence has played a decisive role in quantum information processing. On the other hand, quantum correlation can be considered as a powerful resource for delivering quantum information. Both quantum coherence and quantum correlation may occur in an information propagating process, which challenges us to understand the relationship between coherence and correlation. This is also an important procedure for physicists to know the features of quantum resources. Any quantum system interacting with its surrounding environment will destroy the quantum coherence and fail to fulfil any task of delivering quantum information. In this sense, studying the dynamics of quantum correlation and quantum coherence is very fascinating. In this paper, we investigate the dynamics of the quantum correlation and quantum coherence for two central qubits coupled to their own spin baths modeled by the XY spin chain with Dzyaloshinsky-Moriya interaction. We employ the quantum discord to characterize the quantum correlation, and use the relative entropy to measure quantum coherence. In this way the evolution law of the quantum discord and the relative entropy of quantum coherence of two-qubit system are derived, and the evolution law depends not only on the Dzyaloshinsky-Moriya interaction, the anisotropy parameter and the total number of spin chain sites, but also on the coupling strength between the central spin and its spin chain. Our findings are as follows. Firstly, we find that near the critical point of spin chain the quantum coherence abruptly changes, which can be used to detect the existence of quantum phase transition. Secondly, at the critical point, the relative entropy of quantum coherence is the same as that of classical correlation when time tt0, and it is the same as that of quantum discord when time tt0. At time t0, the sudden transition from quantum discord to classical correlation occurs. All in all, the relative entropy of quantum coherence reflects the behaviors of classical correlation and quantum discord for times tt0 and tt0, respectively, which is caused by the change of the optimal basis for quantum discord. Thirdly, the dynamics of quantum correlation and quantum coherence keep invariant under the scaling variation of the total number of spin chain sites and the coupling strength. Moreover, we find that all the Dzyaloshinsky-Moriya interactions and the anisotropy parameters, as well as the coupling strengths will enhance the decay of quantum coherence and quantum correlation, while they have no obvious effect on the relationship between dynamics of coherence and correlation. The above discussion reveals some new features of quantum coherence and quantum correlation, which may be useful in further developing quantum information theory.

     

    目录

    /

    返回文章
    返回
    Baidu
    map