搜索

x
中国物理学会期刊

相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径

CSTR: 32037.14.aps.64.050301

An integral-transformation corresponding to quantum mechanical fundamental commutative relation and its application in deriving Wigner function

CSTR: 32037.14.aps.64.050301
PDF
导出引用
  • 本文指出相空间中存在有对应量子力学基本对易关系积分变换, 其积分核是1/exp2i(q-Q) (p-P), 其中 表示Weyl 排序, Q, P是坐标算符和动量算符, 其功能是负责算符的三种常用排序(P-Q排序、Q-P排序和Weyl 排序)规则之间的相互转化. 此外, 还导出了此积分核与Wigner 算符之间的关系, 以及Wigner函数在这类积分变换下的性质及用途.

     

    In this paper, it can be found that there is a type of integra-transformation which corresponds to a quantum mechanical fundamental commutative relation, with its integral kernel being 1/exp2i(q-Q)(p-P), here denotes Weyl ordering, and Q and P are the coordinate and the momentum operator, respectively. Such a transformation is responsible for the mutual-converting among three ordering rules(P-Q ordering, Q-P ordering and Weyl ordering). We also deduce the relationship between this kernel and the Wigner operator, and in this way a new approach for deriving Wigner function in quantum states is obtained.

     

    目录

    /

    返回文章
    返回
    Baidu
    map