搜索

x
中国物理学会期刊

黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析

CSTR: 32037.14.aps.63.085203

Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability

CSTR: 32037.14.aps.63.085203
PDF
导出引用
  • 采用理论分析的方法考察了磁场中非理想流体中Rayleigh-Taylor(RT)不稳定性气泡的演化过程. 在与磁场垂直的平面中,综合考虑流体黏性和表面张力的影响,推导了二维非理想磁流体RT不稳定性气泡运动的控制方程组,给出了不同情况下气泡速度的渐近解和数值解,分析了流体黏性、表面张力和磁场对气泡发展的影响. 分析结果表明:流体黏性和表面张力能够降低气泡速度和振幅,即能够抑制RT不稳定性;而磁场对RT不稳定性的影响是由非线性部分引起的,并且磁场非线性部分的方向决定了磁场是促进还是抑制RT 不稳定性的发展.

     

    The evolution of bubble in Rayleigh-Taylor (RT) instability for non-ideal hydromagnetic fluid is investigated theoretically in this study. In a plane perpendicular to the magnetic field, the general governing equation describing the bubble evolution is derived by considering the influences of viscousity, surface tension and magnetic field. The numerical and asymptotic solutions of the bubble velocity in two-dimensional planar geometry are obtained under different conditions and the effects of fluid viscosity, surface tension and magnetic field on the bubble growth are then analyzed in detail. It is found that the bubble velocity is reduced by viscosity and surface tension, which indicates that viscosity and surface tension can suppress the RT instability. It is also observed that the influence of magnetic field on the RT instability is caused by its nonlinear part, and whether the RT instability can be suppressed or enhanced depends on the direction of the nonlinear part of magnetic field.

     

    目录

    /

    返回文章
    返回
    Baidu
    map