搜索

x
中国物理学会期刊

低温燃烧法制备SrMgAl10O17:Eu2+,Er3+高亮度蓝光荧光粉及发光性能研究

CSTR: 32037.14.aps.62.197802

Low-temperature combustion synthesis and luminescent properties of SrMgAl10O17:Eu2+, Er3+ high brightness blue phosphors

CSTR: 32037.14.aps.62.197802
PDF
导出引用
  • 采用低温燃烧法合成SrMgAl10O17:Eu2+及SrMgAl10O17:Eu2+, Er3+蓝色发光材料, 通过X射线衍射仪 (XRD)、扫描电子显微镜 (SEM) 和荧光光谱仪 (PL) 等测试手段对所得样品进行表征. XRD及SEM测试结果表明: 利用低温燃烧法合成SrMgAl10O17材料具有较高的结晶度, 且微量的稀土元素掺杂不会破坏其晶体结构; PL测试结果表明: SrMgAl10O17:Eu2+ 荧光粉在300390 nm范围内可以被有效的激发, 该波长范围与近紫外LED芯片匹配, 发射光谱分布在430520 nm之间, 发射峰位于460 nm, 属蓝光发射材料. 共掺Er3+可显著增强SrMgAl10O17:Eu2+的发光强度, 且当Er3+的掺杂浓度为4%时,样品的发光强度最大, 较单掺Eu2+时样品的发光强度高出54.9%, 表明Er3+对Eu2+的发光具有良好的敏化作用, 该敏化作用的机理可以利用能量传递原理进行解释.

     

    The SrMgAl10O17:Eu2+ and SrMgAl10O17:Eu2+, Er3+ blue phosphors were synthesized by the combustion synthesis method. Their crystal structures and luminescent properties were analyzed by X-ray diffraction (XRD)、scanning electron microscope (SEM) and photoluminescence spectra, respectively. The XRD and SEM results indicate that the sample is well-crystallized in the combustion procedure, and its crystal structure has not changed when doped with low concentrations of rare-earth ions. PL results show that the phosphor of SrMgAl10O17:Eu2+ can be effectively excited by near UV LED chip with a broad emission spectrum extending from 430 nm to 520 nm, and has main peaks located at 460nm. Furthermore, the sample of the luminous intensity is the largest when the Er2+, Er3+ co-doped concentration is 4%, and the emission intensity of Sr0.95MgAl10O17:0.05Eu2+, Er3+ phosphor is significantly enhanced 54.9% higher than that of SrMgAl10O17:Eu2+ phosphor. It is indicated that Er3+has good sensitization effect for Eu2+ in luminescence, and this can be explained by the theory of energy transfer.

     

    目录

    /

    返回文章
    返回
    Baidu
    map