搜索

x
中国物理学会期刊

气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟

CSTR: 32037.14.aps.62.195204

PIC/MCC simulation of the ionization process of SWP influenced by gas pressure and SPP

CSTR: 32037.14.aps.62.195204
PDF
导出引用
  • 基于表面等离激元 (SPP) 的表面波等离子体 (SWP) 源, 具有高密度、低温度及高产率等优异性能, 其应用在电子器件微纳加工、材料改性等领域. 但由于SPP激励SWP放电的电离过程难于用理论分析和实验测量描述, 因而SWP源均匀稳定产生的电离发展过程一直未研究清晰. 本文以SWP放电的数值模拟为研究手段, 采用等离子体与电磁波相互作用的粒子模拟 (PIC) 方法, 结合蒙特卡罗碰撞 (MCC) 方法处理碰撞效应的优势, 研究气体压强影响电离过程的电磁能量耦合机理. 模拟结果表明SWP的高效产生是SPP的局域增强电场致使, 气体压强能够改变波模共振转换的出现时刻而影响了SWP的电离发展过程. 本文的研究成果展示了SPP维持SWP放电的电离过程, 可为下一代米级SWP源的参数优化提供设计建议.

     

    A surface-wave plasma (SWP) source based on surface plasmon polariton (SPP) has fine performances such as high density, low temperature, high production, and so on. It is applied in electronic device micro or nano processing, material modification, etc. Because the ionization of SWP heated by SPP is difficult to describe by theoretical analysis and experimental measurement, the ionization process of producing uniform stable SWP source is not yet well understood. The method in this paper is a numerical simulation of SWP discharges. The electromagnetic energy coupling mechanism of ionization process, influenced by gas pressure, which is studied by combining particle-in-cell (PIC) simulation of reciprocity between plasma and electromagnetic wave with Monte Carlo Collide (MCC) method in merit of dealing with particle collision. Simulated results suggest that the efficient production of SWP is induced by locally enhanced electric field of SPP, and the gas pressure influences the ionization process of SWP by altering the appearance time of wave-mode resonant conversion. Results of this paper show the ionization process of SWP discharge maintained by SPP, and further provide some advices for designing the parameter optimization of next generation meter-scale SWP source.

     

    目录

    /

    返回文章
    返回
    Baidu
    map