Based on the fractional calculus theory, the transport model of fractional coupled Brownian motors in flashing ratchet potential is established. Using the fractional difference, the numerical solution of the model is obtained, and the directional transport properties at various parameters are investigated. Numerical results show that in fractional ratchet system, the fractional order and spring constant not only affect the transport velocity of the particles, but also reverse the current direction. Moreover, when the fractional order is fixed, the generalized stochastic resonance phenomena are observed in the mean transport velocity as the noise density, spring constant or the depth of the ratchet potential varies.