By making use of the method of transfer matrix, we study the behaviors of heat conduction in one-dimensional Fibonacci chain under the influence of on-site potential (including transmission coefficient, Lyapunov coefficient and heat conduction). The results show that, with the on-site potential increasing while fixing the ratios of atom mass and force constant, the transmission coefficient of the low-frequency region decreases, and the corresponding Lyapunov coefficient increases, and the transmission spectrum moves to the higher frequency region. Meanwhile, with the increasing of on-site potential, the heat conductivity of the system decreases. When the on-site potential is large enough, the thermal conductivity of the system will tend to zero. In the curve of κ-ω2, the thermal conductivity shows a slowly increasing trend in steps, and tends to a certain value in the high-frequency region.