搜索

x
中国物理学会期刊

折射/谐衍射红外双波段成像光谱仪系统研究

CSTR: 32037.14.aps.59.6980

Hyper-spectral imaging system with harmonic diffraction element in medium and far infrared

CSTR: 32037.14.aps.59.6980
PDF
导出引用
  • 为了获取足够的目标信息,充分利用中波红外和长波红外的光谱信息,建立了谐衍射中、长波红外超光谱成像系统.利用谐衍射元件独特的色散特性,将谐衍射透镜应用于中、长波红外超光谱成像系统中,使系统在中波红外3.7—4.8 μm和长波红外8—12 μm的2个红外大气窗口内获取数百个光谱图像.设计结果表明,中波红外波段,在18对线/mm处光学系统的调制传递函数(MTF)大于0.55,长波红外波段,在13对线/mm处光学系统的MTF大于0.5,光学系统的衍射环绕能,在中波红外波段30 μm半径范围内大于85%,在长波红外

     

    In order to obtain enough information about the target and make full use of medium- and long-wave infrared spectral data, this article describes a harmonic diffractive/refractive (HDE) optical imaging system. Taking advantage of its special dispersion capability, the application of HDE in the infrared dual-band provides hundreds of spectral images in infrared band, medium-wave infrared band of 3.7—4.8 μm and long-wave infrared band of 8—12 μm. The design results show that: at 18 lines/mm, the optical modulation transfer function is greater than 0.55 in medium-wave infrared band, at 13 lines/mm the optical modulation transfer is greater than 0.5 in long-wave infrared band, in the circle of 30 μm radius, the encircled energy is greater than 85% in medium-wave infrared band, in the circle of 38 μm radius, the encircle energy is great than 80% in long-wave infrared band, the spectral resolution is 0.039 μm at 4.25 μm and 0.072 μm at 8.5 μm respectively. So the optical modulation transfer function in infrared dual-band is close to the diffraction limit, and the encircled energy meets the energy requirement of one pixel of existing domestic detectors.

     

    目录

    /

    返回文章
    返回
    Baidu
    map