We have investigated the steady-state and transient optical properties of InGaAs/GaAs quantum chains and found that the photoluminescence (PL) decay time exhibits a strong photon energy dependence. It increases with the decrease of the emission energy. It is also found that the PL decay time increases with the excitation power. When the excitation power is large enough the PL decay time tends to be saturated. All these experimental results show that there is a strong carrier coupling along the chain direction in the quantum dot chain structure. The polarization PL measurements further confirm the carrier transfer process along the chain direction.