搜索

x
中国物理学会期刊

感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究

CSTR: 32037.14.aps.57.1796

Characterization of ZrN films deposited by ICP enhanced RF magnetron sputtering

CSTR: 32037.14.aps.57.1796
PDF
导出引用
  • 利用感应耦合等离子体(ICP)增强射频磁控溅射技术在Si(111)片和M2钢表面制备了ZrN薄膜,研究了基片的温度和ICP功率对ZrN薄膜的结构以及性能影响.研究发现:在基片温度≤300℃沉积的ZrN薄膜择优取向为(111);基片温度达到450℃时薄膜出现ZrN(200)衍射峰,ZrN(111)晶面的织构系数明显降低.传统磁控溅射沉积薄膜为柱状结构,当ICP为200 W,基片温度为300℃时沉积薄膜中柱状晶体消失;随着基片温度的升高,N/Zr元素比例降低,并且薄膜的电阻率下降;相对于传统溅射,ICP增强射

     

    ZrN films have been prepared by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effects of substrate temperature and ICP power on the microstructure and properties of ZrN films have been investigated systemically. The ZrN films show (111) preferred orientation with the substrate temperature below 300℃. ZrN(200) is observed at 450℃ regardless of ICP power, and the texture coefficient of (111) decreases. Columnar structure, which is observed in the films deposited by conventional magnetron sputtering, disappears in the film synthesized at ICP power of 200 W and substrate temperature of 300℃. With the increase of substrate temperature, N/Zr ratio and the resistivity of films decrease. The films deposited with ICP power on show denser structure, higher hardness and lower stress than those by conventional magnetron sputtering.

     

    目录

    /

    返回文章
    返回
    Baidu
    map