搜索

x
中国物理学会期刊

2+1维双线性Sawada-Kotera方程的对称结构

CSTR: 32037.14.aps.43.1050

SYMMETRY STRUCTURE OF 2+1 DIMENSIONAL BILINEAR SAWADA-KOTERA EQUATION

CSTR: 32037.14.aps.43.1050
PDF
导出引用
  • 对一类2+1维双线性方程从两个不同角度建立了形式级数对称理论。从一已知的时间无关对称出发或从与一维空间坐标有关的任意函数出发,均可得到一包含时间任意函数的形式级数对称。对于2+1维双线性Sawada-Kotera方程,存在6个截断对称。这些截断对称构成一无穷维李代数。一些有意义的子代数(如Virasoro代数等)也被给定。

     

    We established a formal series symmetry theory for a type of generalized 2+1 dimensional bilinear equation in two different ways. Starting from a known time in-dependent symmetry or an arbitrary function of 1-D space, we can get a formal series symmetry with an arbitrary function of time t. For the 2+1 dimensional bilinear Sawada-Kotera equation, there exist six truncated symmetries. These truncated symmetries constitute an infinite dimensional Lie algebra. Some significant subalge-bras such as the Virasoro algebras are also given.

     

    目录

    /

    返回文章
    返回
    Baidu
    map