不确定关系是量子力学的基本特征之一, 随着量子信息理论的蓬勃发展, 不确定关系更是在其中发挥着重要的作用. 特别是将熵引入来描述不确定关系之后, 不确定关系在量子信息技术中涌现出多种应用. 众所周知, 熵不确定度关系已成为几乎所有量子密码协议安全分析的核心要素. 这篇综述主要回顾不确定关系的发展历史和最新研究进展, 从Heisenberg提出不相容测量其结果是不能被预测伊始, 许多学者在该观点的启发下, 做了进一步的相关扩展研究, 将可观测物体与环境之间的量子关联结合起来, 对不确定关系进行各种推广从而得到更普适的数学表达式. 除此以外, 本文还重点介绍了量子存储下的熵不确定度关系及其发展, 也介绍了在某些物理系统中对应的动力学特性. 最后讨论了熵不确定度关系在量子信息领域的各种应用, 从随机数到波粒二象性再到量子密钥分发.
不确定关系是量子力学的基本特征之一, 随着量子信息理论的蓬勃发展, 不确定关系更是在其中发挥着重要的作用. 特别是将熵引入来描述不确定关系之后, 不确定关系在量子信息技术中涌现出多种应用. 众所周知, 熵不确定度关系已成为几乎所有量子密码协议安全分析的核心要素. 这篇综述主要回顾不确定关系的发展历史和最新研究进展, 从Heisenberg提出不相容测量其结果是不能被预测伊始, 许多学者在该观点的启发下, 做了进一步的相关扩展研究, 将可观测物体与环境之间的量子关联结合起来, 对不确定关系进行各种推广从而得到更普适的数学表达式. 除此以外, 本文还重点介绍了量子存储下的熵不确定度关系及其发展, 也介绍了在某些物理系统中对应的动力学特性. 最后讨论了熵不确定度关系在量子信息领域的各种应用, 从随机数到波粒二象性再到量子密钥分发.
量子计算机一个重要的应用是攻破经典密码. 以往的研究表明, 攻破广泛使用的2048位RSA密码所需要的量子比特数目在2000万左右, 远远超出了目前的技术水平. 近期法国研究人员提出, 如使用配备了多模式量子存储的量子计算机, 则只需要1.3万个量子比特即可攻破2048位的RSA密码. 这一研究把量子存储器的应用推广到量子计算领域, 为研制实用化量子计算机提供了一条新的技术路线. 量子存储式量子计算机需要微波段的量子存储器, 这是目前亟待开发的新技术. 基于对量子存储过程中原子辐射本质的分析,近期我们提出了无噪声光子回波方案, 成功解决了光子回波的自发辐射噪声难题, 有望进一步实现微波段量子存储并应用于量子存储式量子计算机中.
量子计算机一个重要的应用是攻破经典密码. 以往的研究表明, 攻破广泛使用的2048位RSA密码所需要的量子比特数目在2000万左右, 远远超出了目前的技术水平. 近期法国研究人员提出, 如使用配备了多模式量子存储的量子计算机, 则只需要1.3万个量子比特即可攻破2048位的RSA密码. 这一研究把量子存储器的应用推广到量子计算领域, 为研制实用化量子计算机提供了一条新的技术路线. 量子存储式量子计算机需要微波段的量子存储器, 这是目前亟待开发的新技术. 基于对量子存储过程中原子辐射本质的分析,近期我们提出了无噪声光子回波方案, 成功解决了光子回波的自发辐射噪声难题, 有望进一步实现微波段量子存储并应用于量子存储式量子计算机中.
本文研究了一个周期驱动的非宇称-时间对称二能级量子系统的非厄米动力学. 通过经典相空间分析方法,解出了该非厄米系统的Floquet态和准能谱, 并解析构造了由该非厄米哈密顿量支配下的量子态的非幺正时间演化算符, 给出了不同参数区域的量子态演化. 本文数值和分析证明, 该非宇称-时间对称二能级Floquet系统, 类似于宇称-时间对称系统, 存在一个准能谱从实数谱到复数谱的相变. 本文还揭示了在量子态的动态演化中存在一种准宇称-时间对称动力学, 即, 该系统的粒子布居概率演化完全满足时间空间对称(宇称-时间对称), 但是由于相位演化违反了宇称-时间对称性的要求, 因此包含相位信息的量子态演化不满足时间空间对称(宇称-时间对称). 这些结果加深了对非厄米物理的理解, 拓展和推广了传统的宇称-时间对称概念.
本文研究了一个周期驱动的非宇称-时间对称二能级量子系统的非厄米动力学. 通过经典相空间分析方法,解出了该非厄米系统的Floquet态和准能谱, 并解析构造了由该非厄米哈密顿量支配下的量子态的非幺正时间演化算符, 给出了不同参数区域的量子态演化. 本文数值和分析证明, 该非宇称-时间对称二能级Floquet系统, 类似于宇称-时间对称系统, 存在一个准能谱从实数谱到复数谱的相变. 本文还揭示了在量子态的动态演化中存在一种准宇称-时间对称动力学, 即, 该系统的粒子布居概率演化完全满足时间空间对称(宇称-时间对称), 但是由于相位演化违反了宇称-时间对称性的要求, 因此包含相位信息的量子态演化不满足时间空间对称(宇称-时间对称). 这些结果加深了对非厄米物理的理解, 拓展和推广了传统的宇称-时间对称概念.
二维Su-Schrieffer-Heeger(SSH)模型是在拓扑物理领域受到广泛研究的一种模型, 具有许多独特的物理性质. 它属于高阶拓扑绝缘体, 在第二条和第三条能带间会产生具有连续谱束缚态(bound states in the continuum, BICs)性质的角态. 本文首先介绍了二维SSH模型的拓扑性质, 在此基础上论证了第二条和第三条能带何时会在整个布里渊区上产生能隙. 随后, 计算了模型的电荷极化分布和电荷密度分布, 证明了当x方向上胞内跃迁几率和胞间跃迁几率较大时, x方向的边缘电荷极化激发了y方向的边缘态, 反之亦然. 同时, 边缘电荷极化激发了角上的异常填充, 产生了具有良好局域性与鲁棒性的拓扑角态. 最后, 构建了一种声学谐振腔模型, 并证明了该模型可以较好的模拟各向异性二维SSH模型的拓扑性质.
二维Su-Schrieffer-Heeger(SSH)模型是在拓扑物理领域受到广泛研究的一种模型, 具有许多独特的物理性质. 它属于高阶拓扑绝缘体, 在第二条和第三条能带间会产生具有连续谱束缚态(bound states in the continuum, BICs)性质的角态. 本文首先介绍了二维SSH模型的拓扑性质, 在此基础上论证了第二条和第三条能带何时会在整个布里渊区上产生能隙. 随后, 计算了模型的电荷极化分布和电荷密度分布, 证明了当x方向上胞内跃迁几率和胞间跃迁几率较大时, x方向的边缘电荷极化激发了y方向的边缘态, 反之亦然. 同时, 边缘电荷极化激发了角上的异常填充, 产生了具有良好局域性与鲁棒性的拓扑角态. 最后, 构建了一种声学谐振腔模型, 并证明了该模型可以较好的模拟各向异性二维SSH模型的拓扑性质.
量子纠缠态的量子非局域关联特性在当前量子信息和量子计算协议中起着重要的作用. 然而, 任何实际的物理系统都不可避免地与周围环境相互作用, 使得在量子信道中的传输过程中, 量子态会发生相干性退化, 进而弱化量子态的量子非局域关联特性. 本文利用一种基于Hardy-type佯谬的高概率量子非局域关联检验方案, 分别研究了两比特偏振纠缠态在经过振幅阻尼信道(ADC)、相位阻尼信道(PDC)和退极化阻尼信道(DC)后的量子非局域关联检验情况. 研究结果表明, DC传输信道对量子态的量子非局域关联检验特性影响较大, 而PDC传输信道对量子态的量子非局域关联检验特性影响较小. 最后, 本文还给出了利用弱测量结合弱测量反转操作克服ADC退相干时, 偏振纠缠态成功进行量子非局域关联检验的条件. 结果表明, 当弱测量的强度增大时, 可有效地降低ADC退相干效应对偏振纠缠态成功进行量子非局域关联检验造成的影响.
量子纠缠态的量子非局域关联特性在当前量子信息和量子计算协议中起着重要的作用. 然而, 任何实际的物理系统都不可避免地与周围环境相互作用, 使得在量子信道中的传输过程中, 量子态会发生相干性退化, 进而弱化量子态的量子非局域关联特性. 本文利用一种基于Hardy-type佯谬的高概率量子非局域关联检验方案, 分别研究了两比特偏振纠缠态在经过振幅阻尼信道(ADC)、相位阻尼信道(PDC)和退极化阻尼信道(DC)后的量子非局域关联检验情况. 研究结果表明, DC传输信道对量子态的量子非局域关联检验特性影响较大, 而PDC传输信道对量子态的量子非局域关联检验特性影响较小. 最后, 本文还给出了利用弱测量结合弱测量反转操作克服ADC退相干时, 偏振纠缠态成功进行量子非局域关联检验的条件. 结果表明, 当弱测量的强度增大时, 可有效地降低ADC退相干效应对偏振纠缠态成功进行量子非局域关联检验造成的影响.
为探索量子系统的退相干机制寻找延缓退相干的方法, 本文研究了关联量子信道中的退相干过程, 计算了关联退极化信道中两体qutrit系统的3种初态: 一种特殊初态、最大相干初态和各向同性初态的范数相干性、相对熵相干性及基矢无关相干性. 分析得出的解析结果、数值结果和演化图像可以发现:1)完全关联的信道能最大程度地抑制退相干; 2)存在一个与关联度无关的最大退相干时间点, 但其退相干的演化行为却依赖着关联度; 3)信道的关联可以增强子系统间的相干性. 基矢无关相干性遵循的不等式关系也在此系统中得以验证.
为探索量子系统的退相干机制寻找延缓退相干的方法, 本文研究了关联量子信道中的退相干过程, 计算了关联退极化信道中两体qutrit系统的3种初态: 一种特殊初态、最大相干初态和各向同性初态的范数相干性、相对熵相干性及基矢无关相干性. 分析得出的解析结果、数值结果和演化图像可以发现:1)完全关联的信道能最大程度地抑制退相干; 2)存在一个与关联度无关的最大退相干时间点, 但其退相干的演化行为却依赖着关联度; 3)信道的关联可以增强子系统间的相干性. 基矢无关相干性遵循的不等式关系也在此系统中得以验证.
基于有效低能理论, 研究了退相位环境下Werner态在石墨烯基量子通道中的隐形传输. 结果表明, 输出态纠缠度总是随着输入态纠缠度的增大而增大, 而相应的保真度却正好相反; 对于给定的输入态, 量子通道中的纠缠越大, 输出态的品质就越高. 对于石墨烯基量子通道, 低温和弱库仑排斥势可以减缓其纠缠资源在退相位环境中的衰减, 且温度低于40 K, 电子间库仑排斥势小于6 eV时, 输出态的平均保真度可以达到80%以上. 这就说明石墨烯材料在量子信息领域中具有潜在的应用价值.
基于有效低能理论, 研究了退相位环境下Werner态在石墨烯基量子通道中的隐形传输. 结果表明, 输出态纠缠度总是随着输入态纠缠度的增大而增大, 而相应的保真度却正好相反; 对于给定的输入态, 量子通道中的纠缠越大, 输出态的品质就越高. 对于石墨烯基量子通道, 低温和弱库仑排斥势可以减缓其纠缠资源在退相位环境中的衰减, 且温度低于40 K, 电子间库仑排斥势小于6 eV时, 输出态的平均保真度可以达到80%以上. 这就说明石墨烯材料在量子信息领域中具有潜在的应用价值.
本文基于随机共振原理和人脑感知物体色彩的基本生物物理过程, 提出了一种低照度彩色图像增强的可解释算法. 我们首先研究了电导基积分放电神经元网络中的随机共振现象, 揭示了放电阈值、突触权重和集群规模对输出响应信噪比的影响, 并识别出放电阈值是影响随机共振效应的关键参数. 然后, 在结合彩色图像视觉感知的生理过程的基础上, 给出了一种基于随机放电神经元网络的彩色图像增强算法, 并以峰值信噪比(PSNR)和自然图像质量评估(NIQE)作为提取最优增强图像的度量指标. 注意到待增强的图像是非周期信号, 因此, 为了优化算法的性能, 首次提出了一种基于亮度分布的分位数的阈值选取策略. 数值实验结果表明, 该算法的增强效果良好且性能稳定, 并可用于军事探测和医学图像预处理等信号处理领域.
本文基于随机共振原理和人脑感知物体色彩的基本生物物理过程, 提出了一种低照度彩色图像增强的可解释算法. 我们首先研究了电导基积分放电神经元网络中的随机共振现象, 揭示了放电阈值、突触权重和集群规模对输出响应信噪比的影响, 并识别出放电阈值是影响随机共振效应的关键参数. 然后, 在结合彩色图像视觉感知的生理过程的基础上, 给出了一种基于随机放电神经元网络的彩色图像增强算法, 并以峰值信噪比(PSNR)和自然图像质量评估(NIQE)作为提取最优增强图像的度量指标. 注意到待增强的图像是非周期信号, 因此, 为了优化算法的性能, 首次提出了一种基于亮度分布的分位数的阈值选取策略. 数值实验结果表明, 该算法的增强效果良好且性能稳定, 并可用于军事探测和医学图像预处理等信号处理领域.
不耐烦情绪是一种因人而异的心理因素, 且随环境实时变化. 本研究构建了基于元胞自动机的行人微观模型, 并用其研究了双向行人流在不耐烦行为决策影响下的动态特征. 模型定义了潜在势能场表达行人对可用空间的占用倾向, 合理体现双向流行人决策的前摄效应. 提出在行人运动过程中, 根据瞬时状态测量、记录和更新行人个体不耐烦水平的方法, 并以此触发个性化行为. 对比研究了3种不同的不耐烦行为模式的作用效果. 仿真试验结果显示, 与不考虑不耐烦行为相比, 当不耐烦水平用于触发横跨行为时, 双向流在速度、流率和等待时间方面的表现均有改善; 当不耐烦用于直接计算行人对有限空间的竞争力时, 这3项指标则在大部分密度水平下均呈恶化. 针对不耐烦作用强度与决策阈值的参数灵敏度分析显示了模型在不耐烦作用表现方面的灵活性. 同时, 分场景的仿真试验还揭示了低比例慢速行人、步道宽度及混合行为模式等对双向流效率的作用.
不耐烦情绪是一种因人而异的心理因素, 且随环境实时变化. 本研究构建了基于元胞自动机的行人微观模型, 并用其研究了双向行人流在不耐烦行为决策影响下的动态特征. 模型定义了潜在势能场表达行人对可用空间的占用倾向, 合理体现双向流行人决策的前摄效应. 提出在行人运动过程中, 根据瞬时状态测量、记录和更新行人个体不耐烦水平的方法, 并以此触发个性化行为. 对比研究了3种不同的不耐烦行为模式的作用效果. 仿真试验结果显示, 与不考虑不耐烦行为相比, 当不耐烦水平用于触发横跨行为时, 双向流在速度、流率和等待时间方面的表现均有改善; 当不耐烦用于直接计算行人对有限空间的竞争力时, 这3项指标则在大部分密度水平下均呈恶化. 针对不耐烦作用强度与决策阈值的参数灵敏度分析显示了模型在不耐烦作用表现方面的灵活性. 同时, 分场景的仿真试验还揭示了低比例慢速行人、步道宽度及混合行为模式等对双向流效率的作用.
C6D6闪烁体探测系统结合脉冲权重技术被广泛应用于中子俘获反应截面测量研究. 实验中采用的样品厚度直接影响中子束流时间, 同时也影响实验数据的可靠性. 本文基于中国散裂中子源反角白光束线(CSNS Back-n) C6D6探测系统, 对比研究了不同厚度的镥(Lu)样品中子俘获反应截面的实验测量. 利用GEANT4蒙特卡罗程序模拟了考虑样品厚度的探测系统光响应, 计算出精确的脉冲权重函数. 实验中, 通过采用较长中子飞行距离和本底测量, 得到了高精度的共振区产额分布. 通过R矩阵理论分析产额分布, 得到了相应的实验共振参数. 结果发现, 较厚Lu样品因其厚度效应导致共振曲线发生变化, 实验共振参数与ENDF/B-VIII.0评价数据库差距较大; 然而, 较薄Lu样品实验结果能够很好地再现ENDF/B-VIII.0评价数据.
C6D6闪烁体探测系统结合脉冲权重技术被广泛应用于中子俘获反应截面测量研究. 实验中采用的样品厚度直接影响中子束流时间, 同时也影响实验数据的可靠性. 本文基于中国散裂中子源反角白光束线(CSNS Back-n) C6D6探测系统, 对比研究了不同厚度的镥(Lu)样品中子俘获反应截面的实验测量. 利用GEANT4蒙特卡罗程序模拟了考虑样品厚度的探测系统光响应, 计算出精确的脉冲权重函数. 实验中, 通过采用较长中子飞行距离和本底测量, 得到了高精度的共振区产额分布. 通过R矩阵理论分析产额分布, 得到了相应的实验共振参数. 结果发现, 较厚Lu样品因其厚度效应导致共振曲线发生变化, 实验共振参数与ENDF/B-VIII.0评价数据库差距较大; 然而, 较薄Lu样品实验结果能够很好地再现ENDF/B-VIII.0评价数据.
提出了一种利用非对称波形激光脉冲与原子相互作用在隧穿区发射高次谐波谱的大频移方案. 通过数值求解偶极近似下的三维含时薛定谔方程, 研究了该激光驱动氢原子发射的高次谐波特性. 结果表明, 利用上升沿与下降沿不同的非对称激光驱动氢原子所发射的高次谐波在截止位置附近发生了大的频率红移和蓝移, 通过改变激光脉冲的上升沿或下降沿, 能调控谐波的频移量. 产生频移的原因是激光脉冲上升沿或下降沿对谐波贡献的不同所致, 当下降沿发射谐波的贡献大于上升沿的贡献时, 谐波发生红移, 反之则发生蓝移. 通过改变激光脉冲波形, 在隧穿电离区能够调控截止位置附近原子发射的高次谐波频率, 对于给定的某一阶谐波, 调控的范围可从奇次阶到邻近偶次阶之间的任意频率处.
提出了一种利用非对称波形激光脉冲与原子相互作用在隧穿区发射高次谐波谱的大频移方案. 通过数值求解偶极近似下的三维含时薛定谔方程, 研究了该激光驱动氢原子发射的高次谐波特性. 结果表明, 利用上升沿与下降沿不同的非对称激光驱动氢原子所发射的高次谐波在截止位置附近发生了大的频率红移和蓝移, 通过改变激光脉冲的上升沿或下降沿, 能调控谐波的频移量. 产生频移的原因是激光脉冲上升沿或下降沿对谐波贡献的不同所致, 当下降沿发射谐波的贡献大于上升沿的贡献时, 谐波发生红移, 反之则发生蓝移. 通过改变激光脉冲波形, 在隧穿电离区能够调控截止位置附近原子发射的高次谐波频率, 对于给定的某一阶谐波, 调控的范围可从奇次阶到邻近偶次阶之间的任意频率处.
基于一维水平光晶格的锶原子光晶格钟实验平台, 当系统的稳定度和不确定度达到10–18量级以上时, 由量子隧穿效应引起的钟频移变得不容忽视. 在浅光晶格中, 量子隧穿效应会使钟跃迁谱线发生明显的展宽现象, 因此, 本文通过研究浅光晶格中的量子隧穿现象, 为87Sr原子光晶格钟系统不确定度的评估奠定基础. 本实验在一维87Sr原子光晶格钟平台上, 利用超稳超窄线宽的698 nm激光激发87Sr冷原子1S0($ \left|g \right\rangle $)→3P0($ \left|e \right\rangle $)跃迁(即钟跃迁), 实现了对锶原子分布在特定量子态的制备. 在深光晶格中, 将原子制备到$ \left|e,{n}_{z}=1 \right\rangle $态后, 再绝热地降低光晶格阱深, 然后在浅光晶格中, 探测激发态的载波-边带可分辨的钟跃迁谱线. 从钟跃迁谱线中观测到载波谱线发生了明显的劈裂, 表明原子在光晶格相邻格点间产生了明显的量子隧穿现象. 通过对光晶格中量子隧穿机制的理解, 不仅有利于提高光晶格钟的不确定度, 也可为观测光晶格中费米子的自旋轨道耦合效应提供基础数据.
基于一维水平光晶格的锶原子光晶格钟实验平台, 当系统的稳定度和不确定度达到10–18量级以上时, 由量子隧穿效应引起的钟频移变得不容忽视. 在浅光晶格中, 量子隧穿效应会使钟跃迁谱线发生明显的展宽现象, 因此, 本文通过研究浅光晶格中的量子隧穿现象, 为87Sr原子光晶格钟系统不确定度的评估奠定基础. 本实验在一维87Sr原子光晶格钟平台上, 利用超稳超窄线宽的698 nm激光激发87Sr冷原子1S0($ \left|g \right\rangle $)→3P0($ \left|e \right\rangle $)跃迁(即钟跃迁), 实现了对锶原子分布在特定量子态的制备. 在深光晶格中, 将原子制备到$ \left|e,{n}_{z}=1 \right\rangle $态后, 再绝热地降低光晶格阱深, 然后在浅光晶格中, 探测激发态的载波-边带可分辨的钟跃迁谱线. 从钟跃迁谱线中观测到载波谱线发生了明显的劈裂, 表明原子在光晶格相邻格点间产生了明显的量子隧穿现象. 通过对光晶格中量子隧穿机制的理解, 不仅有利于提高光晶格钟的不确定度, 也可为观测光晶格中费米子的自旋轨道耦合效应提供基础数据.
分别对裸的直玻璃管和外壁与出入口两端面涂导电银胶的直玻璃管进行了低能电子穿透实验. 穿透电子的倾角分布显示, 穿透电子强度随倾角增大而减少, 并且穿透倾角不会超过玻璃管的几何张角. 还测量了玻璃管在倾角为–0.2°时的充电过程. 对于裸玻璃管, 在充电过程中, 穿透率和角分布有显著的振荡现象. 整体来看, 穿透率随时间先下降后上升, 最后在某个平均值附近振荡; 角分布随穿透率变化同步变化, 先向正角度移动再向负角度移动, 最后在玻璃管的倾角附近振荡. 对于涂导电胶的玻璃管, 在充电过程中, 穿透率和角分布稳定变化. 穿透率随时间先下降后上升最后平稳, 角分布随时间先向负角度移动再向正角度移动, 最后在玻璃管倾角附近稳定. 通过模拟电子与SiO2材料的碰撞过程, 提出了电子在裸玻璃管和涂导电胶玻璃管中的充电过程的物理图像. 该物理图像能很好地解释电子在裸玻璃管和涂导电胶的玻璃管中充电过程的实验结果. 最后, 依据实验结果和物理图像给出了低能电子在玻璃毛细管中稳定输运的条件.
分别对裸的直玻璃管和外壁与出入口两端面涂导电银胶的直玻璃管进行了低能电子穿透实验. 穿透电子的倾角分布显示, 穿透电子强度随倾角增大而减少, 并且穿透倾角不会超过玻璃管的几何张角. 还测量了玻璃管在倾角为–0.2°时的充电过程. 对于裸玻璃管, 在充电过程中, 穿透率和角分布有显著的振荡现象. 整体来看, 穿透率随时间先下降后上升, 最后在某个平均值附近振荡; 角分布随穿透率变化同步变化, 先向正角度移动再向负角度移动, 最后在玻璃管的倾角附近振荡. 对于涂导电胶的玻璃管, 在充电过程中, 穿透率和角分布稳定变化. 穿透率随时间先下降后上升最后平稳, 角分布随时间先向负角度移动再向正角度移动, 最后在玻璃管倾角附近稳定. 通过模拟电子与SiO2材料的碰撞过程, 提出了电子在裸玻璃管和涂导电胶玻璃管中的充电过程的物理图像. 该物理图像能很好地解释电子在裸玻璃管和涂导电胶的玻璃管中充电过程的实验结果. 最后, 依据实验结果和物理图像给出了低能电子在玻璃毛细管中稳定输运的条件.
X射线鬼成像是一种低剂量、非定域成像方法, 对医疗诊断和生物成像具有重要意义. 在基于晶体劳厄衍射分光的X射线鬼成像中, 晶体振动会造成衍射光路上散斑的模糊, 进而导致利用关联方法重构图像衬度和空间分辨的降低. 本文系统分析了衍射光路上散斑图像的模糊程度对归一化二阶关联函数$ {g}^{\left(2\right)} $的最大值和半高全宽的影响. 模糊程度的增强会导致$ {g}^{\left(2\right)} $最大值的减小和半高全宽的展宽, 在理论上证明了模糊程度会引起重构图像的衬度和分辨能力的降低. 为解决上述问题, 本文在衍射光路和直通光路的直接关联方法($ {G}_{\mathrm{L}\mathrm{H}} $)的基础上提出$ {G}_{\mathrm{L}\mathrm{H}}E $方法($ {G}_{\mathrm{L}\mathrm{H}} $ enhanced method). 模拟实验表明$ {G}_{\mathrm{L}\mathrm{H}}E $算法能同时改善图像衬度和提高重构分辨率, 并且模糊程度增强时, $ {G}_{\mathrm{L}\mathrm{H}}E $算法重构图像的峰值信噪比与先对直通光路的散斑图像进行高斯滤波处理再进行双光路关联计算方法($ {G}_{\mathrm{L}\mathrm{L}} $)的差距扩大, 同时保证其对噪声的鲁棒性. 本文为晶体衍射分光的X射线鬼成像的实际应用提供可行的思路.
X射线鬼成像是一种低剂量、非定域成像方法, 对医疗诊断和生物成像具有重要意义. 在基于晶体劳厄衍射分光的X射线鬼成像中, 晶体振动会造成衍射光路上散斑的模糊, 进而导致利用关联方法重构图像衬度和空间分辨的降低. 本文系统分析了衍射光路上散斑图像的模糊程度对归一化二阶关联函数$ {g}^{\left(2\right)} $的最大值和半高全宽的影响. 模糊程度的增强会导致$ {g}^{\left(2\right)} $最大值的减小和半高全宽的展宽, 在理论上证明了模糊程度会引起重构图像的衬度和分辨能力的降低. 为解决上述问题, 本文在衍射光路和直通光路的直接关联方法($ {G}_{\mathrm{L}\mathrm{H}} $)的基础上提出$ {G}_{\mathrm{L}\mathrm{H}}E $方法($ {G}_{\mathrm{L}\mathrm{H}} $ enhanced method). 模拟实验表明$ {G}_{\mathrm{L}\mathrm{H}}E $算法能同时改善图像衬度和提高重构分辨率, 并且模糊程度增强时, $ {G}_{\mathrm{L}\mathrm{H}}E $算法重构图像的峰值信噪比与先对直通光路的散斑图像进行高斯滤波处理再进行双光路关联计算方法($ {G}_{\mathrm{L}\mathrm{L}} $)的差距扩大, 同时保证其对噪声的鲁棒性. 本文为晶体衍射分光的X射线鬼成像的实际应用提供可行的思路.
碱金属原子跃迁线波段压缩态光场是量子信息以及精密测量领域的重要量子资源. 碱金属原子跃迁线波长短(760—860 nm), 受限于非线性晶体的灰迹效应, 光参量放大器制备的此波段压缩态光场的压缩度有限, 目前典型值约3—5 dB. 本文在光参量放大器的理论模型基础上, 结合原子跃迁线波段压缩态光场实验制备面临的问题, 研究光参量放大器输出光场量子噪声随其物理参数的变化规律, 获得最优的物理参数. 构建了级联光参量放大器的理论模型, 以此为基础分别在分析频率2 MHz和100 kHz, 研究了级联环路光学损耗以及相位噪声对级联系统输出量子噪声特性的影响. 研究发现, 对于兆赫兹波段的压缩, 在低的光路损耗以及位相噪声前提下, 级联2—3个光参量放大器可实现压缩的显著提升; 对于低频段压缩, 级联系统对压缩的增强较小. 在目前的实验参数条件下, 进一步探究了级联系统输出压缩态光场的量子极限以及频谱特性. 本研究可为原子跃迁线波段压缩态光场压缩度的提升提供参考和指导.
碱金属原子跃迁线波段压缩态光场是量子信息以及精密测量领域的重要量子资源. 碱金属原子跃迁线波长短(760—860 nm), 受限于非线性晶体的灰迹效应, 光参量放大器制备的此波段压缩态光场的压缩度有限, 目前典型值约3—5 dB. 本文在光参量放大器的理论模型基础上, 结合原子跃迁线波段压缩态光场实验制备面临的问题, 研究光参量放大器输出光场量子噪声随其物理参数的变化规律, 获得最优的物理参数. 构建了级联光参量放大器的理论模型, 以此为基础分别在分析频率2 MHz和100 kHz, 研究了级联环路光学损耗以及相位噪声对级联系统输出量子噪声特性的影响. 研究发现, 对于兆赫兹波段的压缩, 在低的光路损耗以及位相噪声前提下, 级联2—3个光参量放大器可实现压缩的显著提升; 对于低频段压缩, 级联系统对压缩的增强较小. 在目前的实验参数条件下, 进一步探究了级联系统输出压缩态光场的量子极限以及频谱特性. 本研究可为原子跃迁线波段压缩态光场压缩度的提升提供参考和指导.
在皮秒短脉冲泵浦的光参量啁啾脉冲放大(ps-OPCPA)系统中, 泵浦光与信号光之间的高精度时间同步是需要解决的关键问题之一. 本文基于中国工程物理研究院激光聚变研究中心的全OPCPA激光装置, 对用于前端ps-OPCPA中泵浦光与信号光的高精度同步主动控制技术进行了详细研究. 采用大啁啾信号光窄光谱光参量放大的主动反馈方式, 通过合理设计反馈光路信号光的时域展宽啁啾系数, 将泵浦光与信号光的同步时间抖动从ps量级降低至百fs量级的时间范围, 从而极大地改善了前端ps-OPCPA的能量和光谱不稳定性: 7 min测试时间内泵浦光与信号光相对同步时间抖动的均方根值(RMS)从458 fs改善至93 fs, 输出能量RMS不稳定性从30.3%改善至3.15%, 且维持光谱宽度大于100 nm的稳定宽光谱输出.
在皮秒短脉冲泵浦的光参量啁啾脉冲放大(ps-OPCPA)系统中, 泵浦光与信号光之间的高精度时间同步是需要解决的关键问题之一. 本文基于中国工程物理研究院激光聚变研究中心的全OPCPA激光装置, 对用于前端ps-OPCPA中泵浦光与信号光的高精度同步主动控制技术进行了详细研究. 采用大啁啾信号光窄光谱光参量放大的主动反馈方式, 通过合理设计反馈光路信号光的时域展宽啁啾系数, 将泵浦光与信号光的同步时间抖动从ps量级降低至百fs量级的时间范围, 从而极大地改善了前端ps-OPCPA的能量和光谱不稳定性: 7 min测试时间内泵浦光与信号光相对同步时间抖动的均方根值(RMS)从458 fs改善至93 fs, 输出能量RMS不稳定性从30.3%改善至3.15%, 且维持光谱宽度大于100 nm的稳定宽光谱输出.
中高层大气风场是表征中高层大气环境的重要参量, 对中高层大气风场的探测在民用和军用领域有着重要意义. 激光外差光谱技术是近年来迅速发展的一种高光谱分辨率和灵敏度的被动式遥感探测技术, 以激光外差光谱技术为核心研制的激光外差光谱仪因具有体积小、重量轻、结构稳定等特点, 在星载测量中高层风场领域有巨大的潜力和应用前景. 激光外差光谱仪的地面风场探测性能验证是其应用到卫星上的关键环节, 本文利用实验室环境下建立的风场模拟装置实现0—25 m/s的风速变化, 并基于光谱分辨率为0.003 cm–1激光外差光谱仪分别测量了无风速变化和不同风速下的CH4吸收谱, 测量风速的分辨率为3 m/s. 使用光纤F-P干涉仪、波长计和参考池对激光器输出光频率进行实时的相对定标和绝对定标. 通过计算吸收光谱中心频率的偏移量, 反演得到风场风速, 并与风场模拟器风速对比, 相对误差为1.49 m/s. 该实验对激光外差光谱仪测风性能进行有效验证, 证明了使用激光外差光谱仪进行中高层大气风场测量的可能性.
中高层大气风场是表征中高层大气环境的重要参量, 对中高层大气风场的探测在民用和军用领域有着重要意义. 激光外差光谱技术是近年来迅速发展的一种高光谱分辨率和灵敏度的被动式遥感探测技术, 以激光外差光谱技术为核心研制的激光外差光谱仪因具有体积小、重量轻、结构稳定等特点, 在星载测量中高层风场领域有巨大的潜力和应用前景. 激光外差光谱仪的地面风场探测性能验证是其应用到卫星上的关键环节, 本文利用实验室环境下建立的风场模拟装置实现0—25 m/s的风速变化, 并基于光谱分辨率为0.003 cm–1激光外差光谱仪分别测量了无风速变化和不同风速下的CH4吸收谱, 测量风速的分辨率为3 m/s. 使用光纤F-P干涉仪、波长计和参考池对激光器输出光频率进行实时的相对定标和绝对定标. 通过计算吸收光谱中心频率的偏移量, 反演得到风场风速, 并与风场模拟器风速对比, 相对误差为1.49 m/s. 该实验对激光外差光谱仪测风性能进行有效验证, 证明了使用激光外差光谱仪进行中高层大气风场测量的可能性.
针对远距离运动目标的光子测距问题, 建立了运动目标的光子探测回波概率分布模型, 给出了适用于任意目标的光子探测蒙特卡洛模型. 通过实验对比, 验证了蒙特卡洛仿真模型的正确性. 进一步分析了一个探测周期内的平动小矩形目标激光回波和光子回波概率分布变化规律, 讨论了光子测距误差与目标平动速度间的关系. 结果表明: 光斑直径为$ {\text{2}}{\text{.5 m}} $、目标尺度为$ {\text{1 m}} $时, 距离漂移在速度为$ 25{\text{ m/s}} $取到极大值$ 6.72{\text{ cm}} $, 是扩展目标距离漂移的$ 1/2 $倍; 随着平动速度的增加, 以出光斑为界, 距离漂移先增大后保持稳定不变. 本文提出的方法可进一步扩展到其他形状、材质、姿态、运动目标的光子探测, 研究结果为运动目标的光子测距的校正和性能的提升提供了理论依据.
针对远距离运动目标的光子测距问题, 建立了运动目标的光子探测回波概率分布模型, 给出了适用于任意目标的光子探测蒙特卡洛模型. 通过实验对比, 验证了蒙特卡洛仿真模型的正确性. 进一步分析了一个探测周期内的平动小矩形目标激光回波和光子回波概率分布变化规律, 讨论了光子测距误差与目标平动速度间的关系. 结果表明: 光斑直径为$ {\text{2}}{\text{.5 m}} $、目标尺度为$ {\text{1 m}} $时, 距离漂移在速度为$ 25{\text{ m/s}} $取到极大值$ 6.72{\text{ cm}} $, 是扩展目标距离漂移的$ 1/2 $倍; 随着平动速度的增加, 以出光斑为界, 距离漂移先增大后保持稳定不变. 本文提出的方法可进一步扩展到其他形状、材质、姿态、运动目标的光子探测, 研究结果为运动目标的光子测距的校正和性能的提升提供了理论依据.
为了实现高纯度轨道角动量模式的传输和放大, 本文提出了一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器并对其结构进行了设计. 利用有限元法在C波段内对该光子晶体光纤放大器的传输性能进行了系统分析, 研究结果表明, 该光子晶体光纤放大器可支持66种轨道角动量模式的高纯度传输和放大, 其传输的轨道角动量模式的纯度均高于99.4%. 通过对不同拓扑荷数的轨道角动量模式的布里渊增益谱进行系统的分析, 发现均具有较高的布里渊增益系数(> 7 × 10–9 m/W), 与现有的性能最优的OAM放大器相比提高了4—5个数量级, 实现了较高的信号增益. 该光子晶体光纤放大器的综合性能显著优于现有基于受激布里渊放大的光纤放大器和掺杂稀土离子的光纤放大器, 这使其能够稳定、准确地对OAM模式进行同步放大和长距离传输, 为轨道角动量模式激光系统的设计提供了一种可能.
为了实现高纯度轨道角动量模式的传输和放大, 本文提出了一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器并对其结构进行了设计. 利用有限元法在C波段内对该光子晶体光纤放大器的传输性能进行了系统分析, 研究结果表明, 该光子晶体光纤放大器可支持66种轨道角动量模式的高纯度传输和放大, 其传输的轨道角动量模式的纯度均高于99.4%. 通过对不同拓扑荷数的轨道角动量模式的布里渊增益谱进行系统的分析, 发现均具有较高的布里渊增益系数(> 7 × 10–9 m/W), 与现有的性能最优的OAM放大器相比提高了4—5个数量级, 实现了较高的信号增益. 该光子晶体光纤放大器的综合性能显著优于现有基于受激布里渊放大的光纤放大器和掺杂稀土离子的光纤放大器, 这使其能够稳定、准确地对OAM模式进行同步放大和长距离传输, 为轨道角动量模式激光系统的设计提供了一种可能.
无限大平面刚性障板中圆形活塞源的声辐射场可近似为轴对称指向性球面波, 前人只给出了活塞面与界面平行时轴对称指向性球面波的界面响应表达式, 本文针对活塞面与界面不平行的情况, 推导了轴对称指向性球面波的锥面波展开式, 并进一步导出了其界面反射波的表达式. 在源距远大于声波波长的情况下通过鞍点法将界面反射波的表达式化简为了简化表达式. 简化式不仅计算上简洁, 而且物理含义清楚: 轴对称指向性球面波的界面反射波可视为镜像活塞源激发的轴对称指向性球面波与反射系数的乘积. 计算表明, 当活塞半径小于声波波长时, 反射波对活塞与界面的夹角和接收点的环向方位角不太敏感, 反射波的指向性较弱; 当活塞半径大于声波波长时, 反射波对活塞与界面的夹角和接收点的环向方位角很敏感, 反射波的指向性很强. 增加活塞与界面的夹角, 反射波先增加后减小, 反射波的指向性先增强后减弱; 当活塞与界面的夹角等于活塞中心镜像点与接收点的连线与界面法线的夹角时, 反射波最大, 反射波的指向性最强.
无限大平面刚性障板中圆形活塞源的声辐射场可近似为轴对称指向性球面波, 前人只给出了活塞面与界面平行时轴对称指向性球面波的界面响应表达式, 本文针对活塞面与界面不平行的情况, 推导了轴对称指向性球面波的锥面波展开式, 并进一步导出了其界面反射波的表达式. 在源距远大于声波波长的情况下通过鞍点法将界面反射波的表达式化简为了简化表达式. 简化式不仅计算上简洁, 而且物理含义清楚: 轴对称指向性球面波的界面反射波可视为镜像活塞源激发的轴对称指向性球面波与反射系数的乘积. 计算表明, 当活塞半径小于声波波长时, 反射波对活塞与界面的夹角和接收点的环向方位角不太敏感, 反射波的指向性较弱; 当活塞半径大于声波波长时, 反射波对活塞与界面的夹角和接收点的环向方位角很敏感, 反射波的指向性很强. 增加活塞与界面的夹角, 反射波先增加后减小, 反射波的指向性先增强后减弱; 当活塞与界面的夹角等于活塞中心镜像点与接收点的连线与界面法线的夹角时, 反射波最大, 反射波的指向性最强.
复合材料在制造和使用过程中不可避免地会产生褶皱缺陷, 因其形态变化多样, 形变程度较小, 人工辨认存在一定障碍, 容易出现错漏情况. 为提高检测效率, 提出利用Mask-RCNN(Mask region-based convolutional neural networks)目标检测算法对复合材料超声图像中不同形态的褶皱缺陷进行检测并分类. 制备含有不同形态褶皱缺陷的碳纤维复合材料层合板, 利用超声相控阵采集全矩阵数据; 通过波数成像算法得到复合材料层合板纵切面图像, 根据地质层中褶皱的几何学特征, 将复合材料层合板中存在的不同褶皱分为三类, 进而建立褶皱形态与材料损伤程度之间的关系; 提出Mask-RCNN算法用于褶皱缺陷的自动检测并分类, 该算法中语义分割的引入可显示褶皱缺陷的位置和形状. 实验结果表明: Mask-RCNN对不同形态褶皱识别的准确率分别达到92.1%, 90.9%和93.3%, 褶皱分类识别准确、有效. 为实现复合材料层合板数据采集-成像-缺陷判别一体化、自动化提供了理论支撑.
复合材料在制造和使用过程中不可避免地会产生褶皱缺陷, 因其形态变化多样, 形变程度较小, 人工辨认存在一定障碍, 容易出现错漏情况. 为提高检测效率, 提出利用Mask-RCNN(Mask region-based convolutional neural networks)目标检测算法对复合材料超声图像中不同形态的褶皱缺陷进行检测并分类. 制备含有不同形态褶皱缺陷的碳纤维复合材料层合板, 利用超声相控阵采集全矩阵数据; 通过波数成像算法得到复合材料层合板纵切面图像, 根据地质层中褶皱的几何学特征, 将复合材料层合板中存在的不同褶皱分为三类, 进而建立褶皱形态与材料损伤程度之间的关系; 提出Mask-RCNN算法用于褶皱缺陷的自动检测并分类, 该算法中语义分割的引入可显示褶皱缺陷的位置和形状. 实验结果表明: Mask-RCNN对不同形态褶皱识别的准确率分别达到92.1%, 90.9%和93.3%, 褶皱分类识别准确、有效. 为实现复合材料层合板数据采集-成像-缺陷判别一体化、自动化提供了理论支撑.
从单个固体和液滴颗粒的声吸收和散射特性计算入手, 基于概率统计的蒙特卡罗方法(MCM), 将声波以离散化的声子加以处理, 通过追踪其运动历程并进行事件统计, 建立一种气体介质中球形混合颗粒的声衰减预测模型. 对空气中铝粉颗粒和亚微米级水滴的声衰减分别计算和验证后, 将模型推广至含有混合颗粒的三相体系, 对铝粉和液滴构成的单、多分散混合颗粒体系进行数值研究. 结果表明: 两类颗粒的声吸收特性差异明显, 其散射声压均随颗粒无因次尺寸kR的增加呈现从后向散射占主要地位逐渐过渡到前向增强的趋势. 气液固混合颗粒三相体系中, 颗粒类型对于声衰减影响明显、且随浓度的增加不同颗粒的衰减贡献不再遵循随混合比的线性递变关系; 对于多分散体系而言, 声衰减谱受平均粒径影响较大, 对于粒径分布宽度参数则不敏感. 模型可进一步结合数学反演形成混合颗粒体系测量的理论基础.
从单个固体和液滴颗粒的声吸收和散射特性计算入手, 基于概率统计的蒙特卡罗方法(MCM), 将声波以离散化的声子加以处理, 通过追踪其运动历程并进行事件统计, 建立一种气体介质中球形混合颗粒的声衰减预测模型. 对空气中铝粉颗粒和亚微米级水滴的声衰减分别计算和验证后, 将模型推广至含有混合颗粒的三相体系, 对铝粉和液滴构成的单、多分散混合颗粒体系进行数值研究. 结果表明: 两类颗粒的声吸收特性差异明显, 其散射声压均随颗粒无因次尺寸kR的增加呈现从后向散射占主要地位逐渐过渡到前向增强的趋势. 气液固混合颗粒三相体系中, 颗粒类型对于声衰减影响明显、且随浓度的增加不同颗粒的衰减贡献不再遵循随混合比的线性递变关系; 对于多分散体系而言, 声衰减谱受平均粒径影响较大, 对于粒径分布宽度参数则不敏感. 模型可进一步结合数学反演形成混合颗粒体系测量的理论基础.
特征识别是流体力学的重要研究方向, 然而在中高雷诺数情况下物体的尾流流场复杂, 难以通过传统方法实现特征的提取与识别. 深度学习理论与技术的不断发展为复杂流场特征的识别提供了新方法. 基于流场时程数据的深度学习模型, 本文研究了4种模型对尾流场特征提取与识别的精度, 得到了针对流场时程特征提取的高精度新方法. 结果表明: 所提出的模型能够识别尾流物理时程的不同特征, 并通过流场时程实现了目标的外形识别, 验证了方法的可行性; 同时结果表明基于卷积运算的深度学习模型精度高, 适用于流场时程数据的特征分析; 深度学习网络结构更深、层间结构复杂的残差卷积网络识别精度最高, 是尾流时程分析的高精度算法. 本文所提方法从流场物理量时程的角度对流场特征进行了提取与识别, 证明了深度学习方法具有较高的识别精度, 是研究流场特征的重要途径.
特征识别是流体力学的重要研究方向, 然而在中高雷诺数情况下物体的尾流流场复杂, 难以通过传统方法实现特征的提取与识别. 深度学习理论与技术的不断发展为复杂流场特征的识别提供了新方法. 基于流场时程数据的深度学习模型, 本文研究了4种模型对尾流场特征提取与识别的精度, 得到了针对流场时程特征提取的高精度新方法. 结果表明: 所提出的模型能够识别尾流物理时程的不同特征, 并通过流场时程实现了目标的外形识别, 验证了方法的可行性; 同时结果表明基于卷积运算的深度学习模型精度高, 适用于流场时程数据的特征分析; 深度学习网络结构更深、层间结构复杂的残差卷积网络识别精度最高, 是尾流时程分析的高精度算法. 本文所提方法从流场物理量时程的角度对流场特征进行了提取与识别, 证明了深度学习方法具有较高的识别精度, 是研究流场特征的重要途径.
铝颗粒由于具有能量密度高、易储存、燃烧过程不产生温室气体等优势, 有望成为未来化石燃料替代的解决方案. 本文建立了铝颗粒粉尘火焰的燃烧模型, 其中考虑了相间传热、相变、表面化学反应、气相详细化学反应及辐射传热等过程, 并针对铝颗粒粉尘对冲火焰开展了数值模拟研究. 首先, 通过仿真McGill大学的铝颗粒粉尘对冲火焰实验进行模型验证, 并分析了实验中使用铝颗粒本身作为示踪粒子引起的气相速度测量误差, 结果表明, 数值模拟得到的离散相速度分布与实验结果基本一致, 火焰传播速度的预测值也同实验数据吻合较好. 当颗粒粒径小于10 μm时, 连续介质假设不再成立, 相间传热模型必须考虑过度区机制, 随着颗粒粒径的增加, 火焰传播速度不断降低. 随着对冲火焰拉伸率的增加, 颗粒在火焰区的停留时间减少, 并出现燃烧不完全的现象, 粉尘火焰由双峰变为单峰结构. 火焰传播速度随着拉伸率的增加而增大, 通过线性外推可得到未拉伸的火焰传播速率约为29 cm/s. 辐射引起的热损失会导致气相温度大幅降低, 但辐射传热对颗粒的加热作用相对较小.
铝颗粒由于具有能量密度高、易储存、燃烧过程不产生温室气体等优势, 有望成为未来化石燃料替代的解决方案. 本文建立了铝颗粒粉尘火焰的燃烧模型, 其中考虑了相间传热、相变、表面化学反应、气相详细化学反应及辐射传热等过程, 并针对铝颗粒粉尘对冲火焰开展了数值模拟研究. 首先, 通过仿真McGill大学的铝颗粒粉尘对冲火焰实验进行模型验证, 并分析了实验中使用铝颗粒本身作为示踪粒子引起的气相速度测量误差, 结果表明, 数值模拟得到的离散相速度分布与实验结果基本一致, 火焰传播速度的预测值也同实验数据吻合较好. 当颗粒粒径小于10 μm时, 连续介质假设不再成立, 相间传热模型必须考虑过度区机制, 随着颗粒粒径的增加, 火焰传播速度不断降低. 随着对冲火焰拉伸率的增加, 颗粒在火焰区的停留时间减少, 并出现燃烧不完全的现象, 粉尘火焰由双峰变为单峰结构. 火焰传播速度随着拉伸率的增加而增大, 通过线性外推可得到未拉伸的火焰传播速率约为29 cm/s. 辐射引起的热损失会导致气相温度大幅降低, 但辐射传热对颗粒的加热作用相对较小.
托卡马克等离子体物理过程时空尺度跨度大, 不同空间区域(如芯部、台基区、刮削层、靶板区)的主要物理过程不同, 因此需要采用系统集成方法开展全域多时空尺度物理问题分析. 为了更加深入地研究托卡马克等离子体放电实验的稳态运行及爬升期间的输运与约束过程, 通常采用多种物理程序开展集成模拟研究, 对放电实验结果进行集成模拟对照, 相互验证并进一步开展物理分析. 本文基于OMFIT平台, 结合HL-2A装置第37012炮高比压放电实验结果完成了集成模拟验证与分析, 验证了程序的可靠性与适用性. 在该流程中, 通过选取适当的模型, 对实验参数进行了校核与补充, 经演化后模拟结果与实验结果比较吻合. 在此基础上, 本文进一步采用TGLF模型开展了芯部静电漂移波线性不稳定性分析, 结果显示NBI离轴加热导致H模约束改善的原因是, 该实验在NBI功率沉积位置的ETG不稳定性处于被抑制的状态, 输运由ITG不稳定性占据主导, 同时输运水平降低至新经典水平.
托卡马克等离子体物理过程时空尺度跨度大, 不同空间区域(如芯部、台基区、刮削层、靶板区)的主要物理过程不同, 因此需要采用系统集成方法开展全域多时空尺度物理问题分析. 为了更加深入地研究托卡马克等离子体放电实验的稳态运行及爬升期间的输运与约束过程, 通常采用多种物理程序开展集成模拟研究, 对放电实验结果进行集成模拟对照, 相互验证并进一步开展物理分析. 本文基于OMFIT平台, 结合HL-2A装置第37012炮高比压放电实验结果完成了集成模拟验证与分析, 验证了程序的可靠性与适用性. 在该流程中, 通过选取适当的模型, 对实验参数进行了校核与补充, 经演化后模拟结果与实验结果比较吻合. 在此基础上, 本文进一步采用TGLF模型开展了芯部静电漂移波线性不稳定性分析, 结果显示NBI离轴加热导致H模约束改善的原因是, 该实验在NBI功率沉积位置的ETG不稳定性处于被抑制的状态, 输运由ITG不稳定性占据主导, 同时输运水平降低至新经典水平.
本文利用MARS-F程序, 数值研究了HL-2M托卡马克装置高比压等离子体中,环向旋转对外加共振磁扰动场的响应特性的影响. 研究发现, 等离子体响应显著改变共振磁扰动的谱分布, 并影响等离子体内部共振磁扰动场与共振磁扰动线圈电流相位差的依赖关系, 从而改变有理面处径向扰动场的幅值. 当边界旋转频率较小时, 在最外有理面处, 等离子体响应对外加共振磁扰动场有明显的放大效应. 通常, 边缘局域模的控制效果依赖于最外有理面处共振磁扰动场的幅度, 因此可通过控制旋转剖面实现对共振磁扰动场的调控, 进而优化边缘局域模的控制方案.
本文利用MARS-F程序, 数值研究了HL-2M托卡马克装置高比压等离子体中,环向旋转对外加共振磁扰动场的响应特性的影响. 研究发现, 等离子体响应显著改变共振磁扰动的谱分布, 并影响等离子体内部共振磁扰动场与共振磁扰动线圈电流相位差的依赖关系, 从而改变有理面处径向扰动场的幅值. 当边界旋转频率较小时, 在最外有理面处, 等离子体响应对外加共振磁扰动场有明显的放大效应. 通常, 边缘局域模的控制效果依赖于最外有理面处共振磁扰动场的幅度, 因此可通过控制旋转剖面实现对共振磁扰动场的调控, 进而优化边缘局域模的控制方案.
针对我国小行星探测任务对电推进系统离子推力器设计要求, 基于等离子体基本理论建立了多模式离子推力器输入参数与输出特性关系, 完成各工作点下屏栅电压、束电流、阳极电流、加速电压, 流率等输入参数设计, 采用试验研究和理论分析的方法研究了推力器工作特性. 试验结果表明: 在设计输入参数下, 23个工作点推力最大误差小于3%, 比冲最大误差小于4%, 在功率为289—3106 W下, 推力为9.7—117.6 mN, 比冲为1220—3517 s, 效率为23.4%—67.8%, 电子返流极限电压随着推力增加单调减小, 最小、最大推力下分别为–79.5 V和–137 V, 放电损耗随着功率增大从359.7 W/A下降到210 W/A, 并在886 W时存在明显拐点, 效率随功率增大而上升, 在 1700 W后增速变缓并趋于稳定, 在轨应用可综合推力器性能、任务剖面要求、寿命, 合理设计输入参数区间, 制定控制策略.
针对我国小行星探测任务对电推进系统离子推力器设计要求, 基于等离子体基本理论建立了多模式离子推力器输入参数与输出特性关系, 完成各工作点下屏栅电压、束电流、阳极电流、加速电压, 流率等输入参数设计, 采用试验研究和理论分析的方法研究了推力器工作特性. 试验结果表明: 在设计输入参数下, 23个工作点推力最大误差小于3%, 比冲最大误差小于4%, 在功率为289—3106 W下, 推力为9.7—117.6 mN, 比冲为1220—3517 s, 效率为23.4%—67.8%, 电子返流极限电压随着推力增加单调减小, 最小、最大推力下分别为–79.5 V和–137 V, 放电损耗随着功率增大从359.7 W/A下降到210 W/A, 并在886 W时存在明显拐点, 效率随功率增大而上升, 在 1700 W后增速变缓并趋于稳定, 在轨应用可综合推力器性能、任务剖面要求、寿命, 合理设计输入参数区间, 制定控制策略.
本文针对恶劣条件下滑动弧等离子体放电稳定性问题, 搭建了高气压交流旋转滑动弧放电实验系统, 开展了高气压下交流旋转滑动弧放电特性实验, 并对其放电特性、电弧运动特性、光谱特性进行了分析. 研究结果表明: 随着介质气体压力的升高, 滑动弧放电的电压、电流、能量均呈现增大趋势, 当介质气体压力升高到0.52 MPa时, 滑动弧放电的能量从常压下的84.74 J增大到147.13 J; 且随着介质气体压力的升高, 电弧的击穿频率并不是单调变化, 而是在0.2 MPa时达到最大为26.55 kHz; 高气压下电弧运动过程中会出现“弧道骤变”现象; 随着介质气体压力的升高, 滑动弧放电的整体光谱发射强度呈现变强趋势; 通过两谱线法对滑动弧放电的电子激发温度进行了计算, 常压下滑动弧放电的电子激发温度为0.8153 eV, 随着介质气体压力的升高, 电子激发温度呈现升高趋势, 当介质气体压力达到0.4 MPa时, 滑动弧放电的电子激发温度升高至5.3165 eV.
本文针对恶劣条件下滑动弧等离子体放电稳定性问题, 搭建了高气压交流旋转滑动弧放电实验系统, 开展了高气压下交流旋转滑动弧放电特性实验, 并对其放电特性、电弧运动特性、光谱特性进行了分析. 研究结果表明: 随着介质气体压力的升高, 滑动弧放电的电压、电流、能量均呈现增大趋势, 当介质气体压力升高到0.52 MPa时, 滑动弧放电的能量从常压下的84.74 J增大到147.13 J; 且随着介质气体压力的升高, 电弧的击穿频率并不是单调变化, 而是在0.2 MPa时达到最大为26.55 kHz; 高气压下电弧运动过程中会出现“弧道骤变”现象; 随着介质气体压力的升高, 滑动弧放电的整体光谱发射强度呈现变强趋势; 通过两谱线法对滑动弧放电的电子激发温度进行了计算, 常压下滑动弧放电的电子激发温度为0.8153 eV, 随着介质气体压力的升高, 电子激发温度呈现升高趋势, 当介质气体压力达到0.4 MPa时, 滑动弧放电的电子激发温度升高至5.3165 eV.
锆钛酸铅镧(Pb0.94La0.06Zr0.96Ti0.04O3, PLZT)具有良好的介电和储能性质, 是高效、高能量密度电容元件和存储器件的基体材料. 为研究该材料的中子辐照损伤, 首先基于Geant4程序包模拟了能量为1—14 MeV中子辐照锆钛酸铅镧(PLZT)材料产生的反冲原子能谱, 然后根据产生的反冲原子种类和最大能量, 利用二元碰撞方法模拟了不同能量的离子在PLZT中产生的位移损伤(包括空位和间隙原子), 最后根据反冲原子能谱和对应能量离子在材料中产生的缺陷数目计算了不同能量的中子在PLZT材料中产生缺陷浓度以及分布. 结果发现, 对于1—14 MeV能区的快中子而言, 其在厚度为3 cm的PLZT材料中产生的缺陷数目近似与中子能量无关, 约为460 ± 120 空位/中子. 辐照损伤在3 cm厚度内随深度的增加而略有减小, 总体变化小于50%, 该减小主要是由于中子的反散射导致. 本工作为计算中子在材料中的位移损伤提供了一种方法, 同时模拟结果可为研究PLZT基电子器件的中子辐照效应提供指导.
锆钛酸铅镧(Pb0.94La0.06Zr0.96Ti0.04O3, PLZT)具有良好的介电和储能性质, 是高效、高能量密度电容元件和存储器件的基体材料. 为研究该材料的中子辐照损伤, 首先基于Geant4程序包模拟了能量为1—14 MeV中子辐照锆钛酸铅镧(PLZT)材料产生的反冲原子能谱, 然后根据产生的反冲原子种类和最大能量, 利用二元碰撞方法模拟了不同能量的离子在PLZT中产生的位移损伤(包括空位和间隙原子), 最后根据反冲原子能谱和对应能量离子在材料中产生的缺陷数目计算了不同能量的中子在PLZT材料中产生缺陷浓度以及分布. 结果发现, 对于1—14 MeV能区的快中子而言, 其在厚度为3 cm的PLZT材料中产生的缺陷数目近似与中子能量无关, 约为460 ± 120 空位/中子. 辐照损伤在3 cm厚度内随深度的增加而略有减小, 总体变化小于50%, 该减小主要是由于中子的反散射导致. 本工作为计算中子在材料中的位移损伤提供了一种方法, 同时模拟结果可为研究PLZT基电子器件的中子辐照效应提供指导.
高压结构与相变研究对理解物质在极端压缩条件下的性质变化和动力学响应行为具有重要的科学价值, 然而部分过渡金属的动/静高压熔化线差异一直是多年来悬而未解的科学难题. 其中动、静高压固-液相界幅值差异最大的是第五副族金属, 以钒最为反常, 至今仍缺乏自洽的物理认识和理解. 本文采用高能脉冲激光驱动的瞬态X射线衍射诊断技术, 对冲击压缩下钒的熔化特性进行了研究, 首次获取了冲击压缩下钒在200 GPa范围内的晶体结构响应随压力变化的衍射图谱. 研究发现, 冲击压力为155 GPa时, 钒仍保持固态bcc相; 至约190 GPa时转变为液态. 这一结果否定了早期确定的静压熔化线, 与最新的冲击熔化线及高温高压相图符合, 为钒高压熔化线的统一认识提供了新的微观实验证据. 本工作亦可推广至其他材料熔化特性的研究工作中.
高压结构与相变研究对理解物质在极端压缩条件下的性质变化和动力学响应行为具有重要的科学价值, 然而部分过渡金属的动/静高压熔化线差异一直是多年来悬而未解的科学难题. 其中动、静高压固-液相界幅值差异最大的是第五副族金属, 以钒最为反常, 至今仍缺乏自洽的物理认识和理解. 本文采用高能脉冲激光驱动的瞬态X射线衍射诊断技术, 对冲击压缩下钒的熔化特性进行了研究, 首次获取了冲击压缩下钒在200 GPa范围内的晶体结构响应随压力变化的衍射图谱. 研究发现, 冲击压力为155 GPa时, 钒仍保持固态bcc相; 至约190 GPa时转变为液态. 这一结果否定了早期确定的静压熔化线, 与最新的冲击熔化线及高温高压相图符合, 为钒高压熔化线的统一认识提供了新的微观实验证据. 本工作亦可推广至其他材料熔化特性的研究工作中.
基于密度泛函理论的第一性原理计算, 对单层TiOCl2的电子结构、输运性质和光学性质进行了理论研究. 对单层TiOCl2材料的声子谱、分子动力学和弹性常数的计算结果表明, 该材料在常温下能稳定存在, 并具有较好的动力学、热力学和机械稳定性. 电子结构分析表明, 单层TiOCl2是一种间接窄带隙半导体(能隙为1.92 eV). 在应力调控下, 单层TiOCl2材料的能带结构、输运性质和光学性质均发生明显变化. 沿a方向施加–4%的收缩应力后, 单层TiOCl2由间接带隙变为直接带隙, 带隙减小至1.66 eV. 同时TiOCl2还表现出明显的各向异性特征, 电子沿b方向传输(迁移率约为803 cm2·V–1·s–1), 空穴则沿a方向传输(迁移率约为2537 cm2·V–1·s–1). 此外, 施加收缩应力还会使单层TiOCl2材料的光吸收率、反射率和透射率的波峰(谷)发生红移, 进入可见光的紫色波段, 表明单层TiOCl2在未来光电器件领域有着潜在应用前景.
基于密度泛函理论的第一性原理计算, 对单层TiOCl2的电子结构、输运性质和光学性质进行了理论研究. 对单层TiOCl2材料的声子谱、分子动力学和弹性常数的计算结果表明, 该材料在常温下能稳定存在, 并具有较好的动力学、热力学和机械稳定性. 电子结构分析表明, 单层TiOCl2是一种间接窄带隙半导体(能隙为1.92 eV). 在应力调控下, 单层TiOCl2材料的能带结构、输运性质和光学性质均发生明显变化. 沿a方向施加–4%的收缩应力后, 单层TiOCl2由间接带隙变为直接带隙, 带隙减小至1.66 eV. 同时TiOCl2还表现出明显的各向异性特征, 电子沿b方向传输(迁移率约为803 cm2·V–1·s–1), 空穴则沿a方向传输(迁移率约为2537 cm2·V–1·s–1). 此外, 施加收缩应力还会使单层TiOCl2材料的光吸收率、反射率和透射率的波峰(谷)发生红移, 进入可见光的紫色波段, 表明单层TiOCl2在未来光电器件领域有着潜在应用前景.
摩擦纳米发电机作为一种能够将机械能转换为电能的新型能源转换装置, 自发明以来便引起了广泛关注, 然而其环保性能由于原料来源多为合成高分子材料而受到制约. 采用绿色环保的纤维素材料制备摩擦纳米发电机是解决上述问题的重要方式之一. 本研究以竹纤维素和钛酸钡(BaTiO3)为原料, 结合湿法造纸和掺杂改性制备了纤维素/钛酸钡复合纸, 并将其作为正极摩擦层构建了纸基摩擦纳米发电机(cellulose/barium titanate-triboelectric nanogenerator, C/BT-TENG). 结果表明, BaTiO3的加入显著提升了复合纸的相对介电常数, C/BT-TENG的输出性能随着BaTiO3掺杂量增加而提升, 在4%掺杂量时, C/BT-TENG的开路电压和短路电流达到最大值118.5 V 和13.51 µA, 相比纯纤维素纸作为正极摩擦层时, 分别提升了51.3% 和41.2%. 通过模型法分析了介电调控提升C/BT-TENG输出性能的机理. 此外, C/BT-TENG具有良好的输出性能和工作稳定性, 在负载电阻为5 MΩ时, 其获得最大输出功率密度0.36 W/m2, 表现出良好的应用前景.
摩擦纳米发电机作为一种能够将机械能转换为电能的新型能源转换装置, 自发明以来便引起了广泛关注, 然而其环保性能由于原料来源多为合成高分子材料而受到制约. 采用绿色环保的纤维素材料制备摩擦纳米发电机是解决上述问题的重要方式之一. 本研究以竹纤维素和钛酸钡(BaTiO3)为原料, 结合湿法造纸和掺杂改性制备了纤维素/钛酸钡复合纸, 并将其作为正极摩擦层构建了纸基摩擦纳米发电机(cellulose/barium titanate-triboelectric nanogenerator, C/BT-TENG). 结果表明, BaTiO3的加入显著提升了复合纸的相对介电常数, C/BT-TENG的输出性能随着BaTiO3掺杂量增加而提升, 在4%掺杂量时, C/BT-TENG的开路电压和短路电流达到最大值118.5 V 和13.51 µA, 相比纯纤维素纸作为正极摩擦层时, 分别提升了51.3% 和41.2%. 通过模型法分析了介电调控提升C/BT-TENG输出性能的机理. 此外, C/BT-TENG具有良好的输出性能和工作稳定性, 在负载电阻为5 MΩ时, 其获得最大输出功率密度0.36 W/m2, 表现出良好的应用前景.
无机长余辉材料是一种储能释光材料, 其储能特性源于材料内部的电子或空穴陷阱在外界激发光作用下的填充. 通过上转换激发的方式对长余辉材料充能是学者们在近几年提出的一种新颖的激发充能机制. 这种两步离化的激发设计使长余辉材料的充能摆脱了高能离化光的限制, 将充能激发波长扩展至可见光甚至红外光区, 为长余辉技术在生物成像等领域的应用提供了原位激发的选择. 目前, 学者们对上转换充能的研究主要集中在材料的开发和激发路径的设计等方面, 而对充能本身的物理过程知之甚少. 本文通过构建分析上转换充能的速率方程, 预测了激发辐照光对陷阱的光排空影响. 在此基础上, 选择 450 nm 激光激发的 LaMgGa11O19:Mn2+ 长余辉材料体系为模板, 分析了激发光剂量与材料热释光强度的函数关系, 揭示了光辐照陷阱填充与光排空之间的动力学竞争. 此外, 相似的充能动力学规律也适用于其他具有上转换充能性质的长余辉材料.
无机长余辉材料是一种储能释光材料, 其储能特性源于材料内部的电子或空穴陷阱在外界激发光作用下的填充. 通过上转换激发的方式对长余辉材料充能是学者们在近几年提出的一种新颖的激发充能机制. 这种两步离化的激发设计使长余辉材料的充能摆脱了高能离化光的限制, 将充能激发波长扩展至可见光甚至红外光区, 为长余辉技术在生物成像等领域的应用提供了原位激发的选择. 目前, 学者们对上转换充能的研究主要集中在材料的开发和激发路径的设计等方面, 而对充能本身的物理过程知之甚少. 本文通过构建分析上转换充能的速率方程, 预测了激发辐照光对陷阱的光排空影响. 在此基础上, 选择 450 nm 激光激发的 LaMgGa11O19:Mn2+ 长余辉材料体系为模板, 分析了激发光剂量与材料热释光强度的函数关系, 揭示了光辐照陷阱填充与光排空之间的动力学竞争. 此外, 相似的充能动力学规律也适用于其他具有上转换充能性质的长余辉材料.
晶界控制的调幅分解对材料微观组织及性能有着十分重要的影响, 然而, 限于研究手段, 我们对晶界与调幅分解间相互作用过程及机制的认识仍存在不足. 本文采用相场法模拟了实际多晶体系的调幅分解过程, 研究了晶界曲率及晶界处原子扩散速率对调幅组织形貌的影响, 并讨论了调幅分解与晶界迁移的相互作用关系. 结果表明, 晶界能够促进并调制调幅组织形貌, 晶界附近为各向异性调幅组织, 晶粒内部为各向同性双连通调幅组织; 随着晶界曲率增大, 调幅组织由垂直晶界转变为平行晶界; 调幅分解速度随着晶界原子扩散系数的增大而增大, 而调幅分解过程中的晶界迁移速度则随着晶界原子扩散系数的增大表现为先减小后增大; 三维模拟结果与二维模拟结果相一致.
晶界控制的调幅分解对材料微观组织及性能有着十分重要的影响, 然而, 限于研究手段, 我们对晶界与调幅分解间相互作用过程及机制的认识仍存在不足. 本文采用相场法模拟了实际多晶体系的调幅分解过程, 研究了晶界曲率及晶界处原子扩散速率对调幅组织形貌的影响, 并讨论了调幅分解与晶界迁移的相互作用关系. 结果表明, 晶界能够促进并调制调幅组织形貌, 晶界附近为各向异性调幅组织, 晶粒内部为各向同性双连通调幅组织; 随着晶界曲率增大, 调幅组织由垂直晶界转变为平行晶界; 调幅分解速度随着晶界原子扩散系数的增大而增大, 而调幅分解过程中的晶界迁移速度则随着晶界原子扩散系数的增大表现为先减小后增大; 三维模拟结果与二维模拟结果相一致.
光声层析成像是一种发展迅速的成像技术, 其可提供生物组织的结构和功能信息, 结合了光学成像高光学对比度与声学成像高穿透深度的优点. 然而, 由于现有的反投影成像算法通常将围绕目标扫描的超声换能器等效为一个点探测器, 导致非中心成像区域图像的切向模糊, 严重影响了图像质量. 本文提出一种新的光声层析成像算法, 其采用聚焦声场等效模型, 可以快速有效地克服换能器孔径效应所造成的声场畸变, 恢复非中心成像区域的切向分辨率. 仿真结果表明, 该方法对直径5 mm, 距离旋转中心6 mm的目标, 切向分辨率提升至少达2倍. 实验结果表明, 该方法可以有效地恢复边缘图像的切向模糊, 使得复杂目标的微小结构能被清晰探测. 这种新方法为传统的反投影方法提供了一种有价值的替代选择, 对基于圆/球扫描的光声层析成像系统的设计具有重要的指导作用.
光声层析成像是一种发展迅速的成像技术, 其可提供生物组织的结构和功能信息, 结合了光学成像高光学对比度与声学成像高穿透深度的优点. 然而, 由于现有的反投影成像算法通常将围绕目标扫描的超声换能器等效为一个点探测器, 导致非中心成像区域图像的切向模糊, 严重影响了图像质量. 本文提出一种新的光声层析成像算法, 其采用聚焦声场等效模型, 可以快速有效地克服换能器孔径效应所造成的声场畸变, 恢复非中心成像区域的切向分辨率. 仿真结果表明, 该方法对直径5 mm, 距离旋转中心6 mm的目标, 切向分辨率提升至少达2倍. 实验结果表明, 该方法可以有效地恢复边缘图像的切向模糊, 使得复杂目标的微小结构能被清晰探测. 这种新方法为传统的反投影方法提供了一种有价值的替代选择, 对基于圆/球扫描的光声层析成像系统的设计具有重要的指导作用.
针对智能反射面辅助的星地融合网络, 提出了一种基于窃听者非完美信道状态信息的鲁棒安全波束成形方法. 首先, 考虑到卫星利用点波束技术服务地球站, 而地面基站通过多播技术服务多个地面用户, 并且在两个网络实现频谱共享的情况, 建立以系统总发射功率最小化为目标, 基站用户服务质量和地球站安全可达速率为约束条件的联合优化问题; 其次, 为了求解该非凸问题, 利用三角不等式和Holder不等式推导出窃听者非完美信道状态信息条件下的输出信干噪比上下界; 接下来, 进一步提出了基于半正定规划和惩罚函数相结合的鲁棒波束成形和功率控制联合优化方法, 以实现星地融合网络的安全可靠传输. 最后, 计算机仿真结果验证了本文所提算法的有效性和优越性.
针对智能反射面辅助的星地融合网络, 提出了一种基于窃听者非完美信道状态信息的鲁棒安全波束成形方法. 首先, 考虑到卫星利用点波束技术服务地球站, 而地面基站通过多播技术服务多个地面用户, 并且在两个网络实现频谱共享的情况, 建立以系统总发射功率最小化为目标, 基站用户服务质量和地球站安全可达速率为约束条件的联合优化问题; 其次, 为了求解该非凸问题, 利用三角不等式和Holder不等式推导出窃听者非完美信道状态信息条件下的输出信干噪比上下界; 接下来, 进一步提出了基于半正定规划和惩罚函数相结合的鲁棒波束成形和功率控制联合优化方法, 以实现星地融合网络的安全可靠传输. 最后, 计算机仿真结果验证了本文所提算法的有效性和优越性.
利用非平衡格林函数结合密度泛函理论, 研究了顺式蒽二噻吩和反式蒽二噻吩分子连接锯齿边碳化硅纳米带的自旋输运特性, 并在铁磁场下观察到自旋向上和自旋向下具有同方向的自旋整流特性. 在铁磁场下, 边缘碳原子或者硅原子双氢原子钝化可以改变锯齿边碳化硅纳米带的本征金属性, 使其转变为半导体. 顺式蒽二噻吩器件和反式蒽二噻吩器件的自旋向上电流-电压特性可以呈现显著的自旋整流效应, 相应的最大自旋整流比分别接近1011和1010. 此外, 由于自旋向上和自旋向下电流值之间的巨大差异, 两个器件的电流-电压特性都在正偏压区域呈现出完美的自旋过滤行为. 以上发现对未来设计自旋功能分子器件具有重要意义.
利用非平衡格林函数结合密度泛函理论, 研究了顺式蒽二噻吩和反式蒽二噻吩分子连接锯齿边碳化硅纳米带的自旋输运特性, 并在铁磁场下观察到自旋向上和自旋向下具有同方向的自旋整流特性. 在铁磁场下, 边缘碳原子或者硅原子双氢原子钝化可以改变锯齿边碳化硅纳米带的本征金属性, 使其转变为半导体. 顺式蒽二噻吩器件和反式蒽二噻吩器件的自旋向上电流-电压特性可以呈现显著的自旋整流效应, 相应的最大自旋整流比分别接近1011和1010. 此外, 由于自旋向上和自旋向下电流值之间的巨大差异, 两个器件的电流-电压特性都在正偏压区域呈现出完美的自旋过滤行为. 以上发现对未来设计自旋功能分子器件具有重要意义.
研究了自旋轨道耦合量子点中的量子相干效应. 运用输运电子的全计数统计方法计算系统的平均电流、散粒噪声和偏斜, 发现体系存在自旋轨道耦合作用时, 散粒噪声值随自旋轨道耦合常数的增加而减小. 更重要的是, 电流、噪声和偏斜随磁通周期性波动, 并且波动周期不受自旋轨道耦合强度大小、自旋极化率以及动力学耦合不对称的影响.
研究了自旋轨道耦合量子点中的量子相干效应. 运用输运电子的全计数统计方法计算系统的平均电流、散粒噪声和偏斜, 发现体系存在自旋轨道耦合作用时, 散粒噪声值随自旋轨道耦合常数的增加而减小. 更重要的是, 电流、噪声和偏斜随磁通周期性波动, 并且波动周期不受自旋轨道耦合强度大小、自旋极化率以及动力学耦合不对称的影响.
基于生物阻抗谱技术提出一种细胞悬浮液浓度自动识别方法, 该方法结合了多元线性回归算法和生物阻抗谱技术, 能够快速准确地识别细胞悬浮液的浓度. 首先, 提出一种细胞位置随机分布策略, 模拟细胞的真实存在状态; 其次, 采用数值仿真的方法生成2400组不同浓度的正常、癌变以及混合的细胞模型并计算生物阻抗谱数据; 然后, 利用多元线性回归、支持向量机和梯度提升三种回归算法分别对癌变细胞浓度进行鉴别, 仿真结果表明, 多元线性回归算法为最佳回归模型, 其平均拟合优度和均方误差分别是0.9997和0.0008; 最后, 将多元线性回归算法应用于不同浓度的红细胞悬浮液的识别中, 实验结果显示其平均拟合优度和均方误差分别是0.9998和0.0079, 说明该方法具有较高的细胞悬浮液浓度识别能力.
基于生物阻抗谱技术提出一种细胞悬浮液浓度自动识别方法, 该方法结合了多元线性回归算法和生物阻抗谱技术, 能够快速准确地识别细胞悬浮液的浓度. 首先, 提出一种细胞位置随机分布策略, 模拟细胞的真实存在状态; 其次, 采用数值仿真的方法生成2400组不同浓度的正常、癌变以及混合的细胞模型并计算生物阻抗谱数据; 然后, 利用多元线性回归、支持向量机和梯度提升三种回归算法分别对癌变细胞浓度进行鉴别, 仿真结果表明, 多元线性回归算法为最佳回归模型, 其平均拟合优度和均方误差分别是0.9997和0.0008; 最后, 将多元线性回归算法应用于不同浓度的红细胞悬浮液的识别中, 实验结果显示其平均拟合优度和均方误差分别是0.9998和0.0079, 说明该方法具有较高的细胞悬浮液浓度识别能力.
在物联网时代, 如何开发一种可持续供电、部署方便且使用灵活的智能传感器系统成为了亟待解决的难题. 以麦克斯韦位移电流作为驱动力的摩擦纳米发电机(triboelectric nanogenerator, TENG)可直接将机械刺激转化为电信号, 因此可作为自驱动传感器使用. 基于TENG的传感器拥有结构简单、瞬时功率密度高等优点, 为构建智能传感器系统提供了重要手段. 同时, 机器学习作为一种成本低、开发周期短、数据处理能力和预测能力强的技术, 对TENG产生的大量电学信号处理效果显著. 本文梳理了基于TENG的传感器系统通过采用机器学习技术进行信号处理和智能识别的最新研究进展, 从交通安全、环境监测、信息安全、人机交互和健康运动检测等角度出发, 概述了该研究方向的技术特点与研究现状. 最后, 深入讨论了该领域当前存在的挑战和未来的发展趋势, 并分析了未来如何改进以期开拓更广阔的应用空间. 我们相信机器学习技术与TENG传感器的结合将推动未来智能传感器网络的快速发展.
在物联网时代, 如何开发一种可持续供电、部署方便且使用灵活的智能传感器系统成为了亟待解决的难题. 以麦克斯韦位移电流作为驱动力的摩擦纳米发电机(triboelectric nanogenerator, TENG)可直接将机械刺激转化为电信号, 因此可作为自驱动传感器使用. 基于TENG的传感器拥有结构简单、瞬时功率密度高等优点, 为构建智能传感器系统提供了重要手段. 同时, 机器学习作为一种成本低、开发周期短、数据处理能力和预测能力强的技术, 对TENG产生的大量电学信号处理效果显著. 本文梳理了基于TENG的传感器系统通过采用机器学习技术进行信号处理和智能识别的最新研究进展, 从交通安全、环境监测、信息安全、人机交互和健康运动检测等角度出发, 概述了该研究方向的技术特点与研究现状. 最后, 深入讨论了该领域当前存在的挑战和未来的发展趋势, 并分析了未来如何改进以期开拓更广阔的应用空间. 我们相信机器学习技术与TENG传感器的结合将推动未来智能传感器网络的快速发展.