研究了一类广义(3+1)维非线性Burgers系统.首先,利用同伦映射方法构造了相应的映射关系式.其次,利用迭代方法得到了扰动系统的一个孤波非行波的级数解.
研究了一类广义(3+1)维非线性Burgers系统.首先,利用同伦映射方法构造了相应的映射关系式.其次,利用迭代方法得到了扰动系统的一个孤波非行波的级数解.
为了解决粒子滤波的粒子退化和粒子多样性丧失问题,提出了一种基于Stiefel流形的粒子滤波算法.该算法将系统模型置于Stiefel流形上,用朗之万分布描述过程转移概率分布,用矩阵正态分布表示似然函数分布,在流形分布上进行粒子采样.在计算加权粒子的均值时,将流形嵌入到欧氏空间中,先计算欧氏空间中的粒子均值,再将计算结果投影到嵌套流形上,这就排除了噪声统计特性对粒子权重方差的影响,得到了一种受系统状态模型限制较少的重要性概率密度函数通用选择方案.仿真时选取单变量非静态增长模型,仿真结果验证了该算法的实时性、鲁棒性,滤波精度和滤波效率均比无味粒子滤波算法更好.
为了解决粒子滤波的粒子退化和粒子多样性丧失问题,提出了一种基于Stiefel流形的粒子滤波算法.该算法将系统模型置于Stiefel流形上,用朗之万分布描述过程转移概率分布,用矩阵正态分布表示似然函数分布,在流形分布上进行粒子采样.在计算加权粒子的均值时,将流形嵌入到欧氏空间中,先计算欧氏空间中的粒子均值,再将计算结果投影到嵌套流形上,这就排除了噪声统计特性对粒子权重方差的影响,得到了一种受系统状态模型限制较少的重要性概率密度函数通用选择方案.仿真时选取单变量非静态增长模型,仿真结果验证了该算法的实时性、鲁棒性,滤波精度和滤波效率均比无味粒子滤波算法更好.
研究了广义Pfaff-Birkhoff-dAlembert原理和广义Birkhoff系统在群的无限小变换下的形式不变性质.给出了形式不变性的判据,并由形式不变性导出Noether守恒量和新型守恒量.
研究了广义Pfaff-Birkhoff-dAlembert原理和广义Birkhoff系统在群的无限小变换下的形式不变性质.给出了形式不变性的判据,并由形式不变性导出Noether守恒量和新型守恒量.
引入Whittaker方程的Birkhoff表示,构造与该表示对应的Hamilton函数,并利用Hamilton-Poisson方法得到Whittaker方程的解.指出上述Hamilton函数与传统分析力学中Hamilton函数的区别.
引入Whittaker方程的Birkhoff表示,构造与该表示对应的Hamilton函数,并利用Hamilton-Poisson方法得到Whittaker方程的解.指出上述Hamilton函数与传统分析力学中Hamilton函数的区别.
将圆截面Kirchhoff弹性压扭直杆的Greenhill公式推广到精确模型. 基于平面截面假定,在弯扭的基础上增加了拉压和剪切变形,将弹性杆的位形表达为截面的弧坐标历程. 由弹性杆精确模型的平衡微分方程,得到了两端受力螺旋作用时对应于直线平衡状态的特解,导出了线性化扰动方程及其通解,再根据两端为铰支时的边界条件以及积分常数存在非零解的条件导出弹性直杆精确模型的Greenhill公式. 结果表明,由力螺旋表示的稳定域为一对称的封闭区域,拉压和剪切对稳定性的影响取决于拉压柔度与剪切柔度之差、抗弯刚度和杆长这三个因素.
将圆截面Kirchhoff弹性压扭直杆的Greenhill公式推广到精确模型. 基于平面截面假定,在弯扭的基础上增加了拉压和剪切变形,将弹性杆的位形表达为截面的弧坐标历程. 由弹性杆精确模型的平衡微分方程,得到了两端受力螺旋作用时对应于直线平衡状态的特解,导出了线性化扰动方程及其通解,再根据两端为铰支时的边界条件以及积分常数存在非零解的条件导出弹性直杆精确模型的Greenhill公式. 结果表明,由力螺旋表示的稳定域为一对称的封闭区域,拉压和剪切对稳定性的影响取决于拉压柔度与剪切柔度之差、抗弯刚度和杆长这三个因素.
对槽道湍流的展向振荡电磁力控制进行了实验研究,讨论了展向振荡电磁力对宏观流场、近壁湍流结构以及壁面阻力的影响.采用谱方法进行了数值模拟的对比.数值模拟和实验结果均表明展向振荡电磁力能够使近壁区域的宏观流场产生周期性振荡,并影响壁湍流的条带结构,使其在展向上发生倾斜,从而使壁面阻力减小.
对槽道湍流的展向振荡电磁力控制进行了实验研究,讨论了展向振荡电磁力对宏观流场、近壁湍流结构以及壁面阻力的影响.采用谱方法进行了数值模拟的对比.数值模拟和实验结果均表明展向振荡电磁力能够使近壁区域的宏观流场产生周期性振荡,并影响壁湍流的条带结构,使其在展向上发生倾斜,从而使壁面阻力减小.
用动力系统分岔方法研究了一类非线性色散Boussinesq方程.在不同的参数条件下,给出了该方程具有隐函数形式的孤立波解的解析表达式.数值模拟进一步验证了所得结果的正确性.
用动力系统分岔方法研究了一类非线性色散Boussinesq方程.在不同的参数条件下,给出了该方程具有隐函数形式的孤立波解的解析表达式.数值模拟进一步验证了所得结果的正确性.
利用二次型理论,通过三次保对易的辛变换,成功解决了三维各向异性耦合谐振子哈密顿量的对角化问题.进一步,给出了体系的量子化能谱和精确波函数.
利用二次型理论,通过三次保对易的辛变换,成功解决了三维各向异性耦合谐振子哈密顿量的对角化问题.进一步,给出了体系的量子化能谱和精确波函数.
考虑初始处于W态的三个二能级原子,将其中两个原子同时分别注入处于真空态的两个腔中并发生共振相互作用的情况.采用数值计算方法,研究了对腔外原子的旋转操作和测量对腔内原子纠缠性质的影响.研究结果表明,通过对腔外原子的旋转操作和选择性测量可控制腔内原子的纠缠性质.
考虑初始处于W态的三个二能级原子,将其中两个原子同时分别注入处于真空态的两个腔中并发生共振相互作用的情况.采用数值计算方法,研究了对腔外原子的旋转操作和测量对腔内原子纠缠性质的影响.研究结果表明,通过对腔外原子的旋转操作和选择性测量可控制腔内原子的纠缠性质.
研究利用基于量子跳跃的量子反馈控制来产生三个二能级原子之间稳定的纠缠.考虑三个二能级原子处于一个严重耗散的单模光腔中,分别讨论了反馈作用在一个原子上和反馈同时作用在三个原子上的情况.研究发现:当反馈作用在某个原子上时,基于量子跳跃的量子反馈能够保护另外两个原子的最大纠缠态.当反馈同时作用在三个原子上时,选择合适的参数可以得到两个基矢张开的无消相干子空间,并且利用量子轨迹蒙特卡罗波函数方法,得到一定初始条件下系统最终可以演化到这个子空间中三个原子之间的最大纠缠态.
研究利用基于量子跳跃的量子反馈控制来产生三个二能级原子之间稳定的纠缠.考虑三个二能级原子处于一个严重耗散的单模光腔中,分别讨论了反馈作用在一个原子上和反馈同时作用在三个原子上的情况.研究发现:当反馈作用在某个原子上时,基于量子跳跃的量子反馈能够保护另外两个原子的最大纠缠态.当反馈同时作用在三个原子上时,选择合适的参数可以得到两个基矢张开的无消相干子空间,并且利用量子轨迹蒙特卡罗波函数方法,得到一定初始条件下系统最终可以演化到这个子空间中三个原子之间的最大纠缠态.
将固体表面分别近似为具有简单的周期性矩形、三角形和半圆形微粗糙结构表面,建立了两相流的晶格玻尔兹曼模型.通过测量不同微粗糙结构表面上液滴的接触角,探讨微结构形状和尺寸的改变对固体材料表面疏水性能的影响.最后,由流体在各种糙壁管中的速度滑移,验证了结论的正确性.
将固体表面分别近似为具有简单的周期性矩形、三角形和半圆形微粗糙结构表面,建立了两相流的晶格玻尔兹曼模型.通过测量不同微粗糙结构表面上液滴的接触角,探讨微结构形状和尺寸的改变对固体材料表面疏水性能的影响.最后,由流体在各种糙壁管中的速度滑移,验证了结论的正确性.
建立了光学微腔中光子激子系统的物理模型,确定了光学微腔宽度为常数和可变这两种情况下玻色凝聚时化学势的变化范围和粒子数密度随温度和位置的变化规律.以半导体GaAs光学微腔为例,探讨了温度对玻色凝聚的影响.研究表明:系统出现玻色凝聚时激子化学势的变化范围与材料介电函数、微腔宽度有关,而光子和激子的粒子数密度及总粒子数还与温度有关.玻色凝聚温度理论值与实验值接近.刚出现玻色凝聚时,光子和激子的粒子数密度几乎相等,且局限在r=0的附近;随着温度的降低,光子和激子的粒子数密度都增加,且存在的范围也不断扩大;不论光学微腔宽度是否可变,光子和激子的粒子数密度以及总粒子数都随温度的降低而增大,光子数总是多于激子数.
建立了光学微腔中光子激子系统的物理模型,确定了光学微腔宽度为常数和可变这两种情况下玻色凝聚时化学势的变化范围和粒子数密度随温度和位置的变化规律.以半导体GaAs光学微腔为例,探讨了温度对玻色凝聚的影响.研究表明:系统出现玻色凝聚时激子化学势的变化范围与材料介电函数、微腔宽度有关,而光子和激子的粒子数密度及总粒子数还与温度有关.玻色凝聚温度理论值与实验值接近.刚出现玻色凝聚时,光子和激子的粒子数密度几乎相等,且局限在r=0的附近;随着温度的降低,光子和激子的粒子数密度都增加,且存在的范围也不断扩大;不论光学微腔宽度是否可变,光子和激子的粒子数密度以及总粒子数都随温度的降低而增大,光子数总是多于激子数.
为了研究混沌系统的性质及其应用,采用分立元件设计并实现了单参数Lorenz混沌系统,系统参数与电路元件参数一一对应.通过调节电路中的可变电阻,观察到了该单参数系统的极限环、叉式分岔、倍周期分岔和混沌等动力学现象,以及该系统由倍周期分岔进入混沌的过程.研究了分数阶单参数Lorenz系统存在混沌的必要条件,找出了分数阶单参数Lorenz系统出现混沌的最低阶数以及最低阶数随系统参数变化的一般规律.电路仿真与电路实现研究表明,单参数Lorenz系统具有物理可实现性、丰富的动力学特性以及理论分析与实验结果的一致性.
为了研究混沌系统的性质及其应用,采用分立元件设计并实现了单参数Lorenz混沌系统,系统参数与电路元件参数一一对应.通过调节电路中的可变电阻,观察到了该单参数系统的极限环、叉式分岔、倍周期分岔和混沌等动力学现象,以及该系统由倍周期分岔进入混沌的过程.研究了分数阶单参数Lorenz系统存在混沌的必要条件,找出了分数阶单参数Lorenz系统出现混沌的最低阶数以及最低阶数随系统参数变化的一般规律.电路仿真与电路实现研究表明,单参数Lorenz系统具有物理可实现性、丰富的动力学特性以及理论分析与实验结果的一致性.
最近几年,边界碰撞分岔已经引起了越来越多的关注.以不连续导通模式下的电流反馈型Buck变换器为例,推导出两个边界三段形式的分段光滑系统的离散映射模型.数值仿真得到以参考电流为分岔参数的分岔图,然后具体分析定点的稳定存在域、分叉图中各段的映射构成和边界碰撞点处工作模式的转换.最后软件仿真和实验验证了二维分段光滑系统边界碰撞和分岔行为的正确性.
最近几年,边界碰撞分岔已经引起了越来越多的关注.以不连续导通模式下的电流反馈型Buck变换器为例,推导出两个边界三段形式的分段光滑系统的离散映射模型.数值仿真得到以参考电流为分岔参数的分岔图,然后具体分析定点的稳定存在域、分叉图中各段的映射构成和边界碰撞点处工作模式的转换.最后软件仿真和实验验证了二维分段光滑系统边界碰撞和分岔行为的正确性.
构建了新的包含2个子系统的切换四涡卷超混沌系统,2个子系统之间既相互关联又相互切换.分析了2个子系统的分岔图、平衡点的稳定性、Lyapunov指数以及动力学行为的演化过程.设计了实现切换四涡卷超混沌系统的电路,系统以时间依赖和状态依赖两种切换律进行任意切换和自主切换,仅用一个电路就能实现2个子系统的切换功能.
构建了新的包含2个子系统的切换四涡卷超混沌系统,2个子系统之间既相互关联又相互切换.分析了2个子系统的分岔图、平衡点的稳定性、Lyapunov指数以及动力学行为的演化过程.设计了实现切换四涡卷超混沌系统的电路,系统以时间依赖和状态依赖两种切换律进行任意切换和自主切换,仅用一个电路就能实现2个子系统的切换功能.
针对简并光学参量振荡器的非线性动力学特点,应用互耦合参量调制法研究了两台简并光学参量振荡器之间的超混沌控制与周期态同步.理论研究结果表明,对于全同或不完全相同的简并光学参量振荡器均可实现从超混沌输出到周期输出的转化,当满足最大条件Lyapunov指数小于零时,两台全同简并光学参量振荡器之间可以实现两种方式的周期态精确同步,即同向同步和反向同步, 同步方式与初始条件和调制系数有关.
针对简并光学参量振荡器的非线性动力学特点,应用互耦合参量调制法研究了两台简并光学参量振荡器之间的超混沌控制与周期态同步.理论研究结果表明,对于全同或不完全相同的简并光学参量振荡器均可实现从超混沌输出到周期输出的转化,当满足最大条件Lyapunov指数小于零时,两台全同简并光学参量振荡器之间可以实现两种方式的周期态精确同步,即同向同步和反向同步, 同步方式与初始条件和调制系数有关.
利用拟合法简化了单电子晶体管与金属氧化物半导体混合结构器件SETMOS的负微分电阻特性方程,提出了由SETMOS设计多涡卷混沌电路的方法.理论上定性和定量地分析了负微分电阻特性对于多涡卷蔡氏电路平衡点的影响.经研究发现,多涡卷蔡氏电路混沌在非线性函数的各负斜率区中形成径向收缩、轴向拉伸的单向运动,而在各正斜率区中形成径向拉伸、轴向收缩的涡卷运动.这为进一步实现多涡卷电路及研究其复杂动力学行为提供了理论基础.
利用拟合法简化了单电子晶体管与金属氧化物半导体混合结构器件SETMOS的负微分电阻特性方程,提出了由SETMOS设计多涡卷混沌电路的方法.理论上定性和定量地分析了负微分电阻特性对于多涡卷蔡氏电路平衡点的影响.经研究发现,多涡卷蔡氏电路混沌在非线性函数的各负斜率区中形成径向收缩、轴向拉伸的单向运动,而在各正斜率区中形成径向拉伸、轴向收缩的涡卷运动.这为进一步实现多涡卷电路及研究其复杂动力学行为提供了理论基础.
基于细胞神经网络结构,利用具有负微分电阻特性的单电子晶体管与金属氧化物半导体混合结构器件SETMOS实现了多涡卷蔡氏电路.对该电路系统的基本动力学特性(如相图、分岔图、Lyapunov指数、Poincaré映射和功率谱)进行了理论分析和数值仿真,并利用电路仿真实验验证了该三阶四涡卷蔡氏电路设计的正确性和可行性.研究结果表明,SETMOS的负微分电阻特性决定着多涡卷蔡氏电路的复杂动力学行为,而且所设计的电路结构简单易行.
基于细胞神经网络结构,利用具有负微分电阻特性的单电子晶体管与金属氧化物半导体混合结构器件SETMOS实现了多涡卷蔡氏电路.对该电路系统的基本动力学特性(如相图、分岔图、Lyapunov指数、Poincaré映射和功率谱)进行了理论分析和数值仿真,并利用电路仿真实验验证了该三阶四涡卷蔡氏电路设计的正确性和可行性.研究结果表明,SETMOS的负微分电阻特性决定着多涡卷蔡氏电路的复杂动力学行为,而且所设计的电路结构简单易行.
基于单周期控制的自治性,建立了描述单周期控制Cuk功率因数校正(PFC)变换器动力学行为的非线性状态平均模型.在此基础上,采用谐波平衡法得出了该系统周期平衡态的近似解析表达式,继而通过判定Floquet乘子的变化趋势,准确地预测了该变换器首次失稳时分岔点的位置和类型,揭示了系统出现中尺度不稳定现象的物理机理.研究结果表明,该变换器周期闭轨稳定性的丧失,即Neimark-Sacker分岔的发生是最终导致中尺度振荡现象产生的根本原因.最后,电路实验验证了理论分析的正确性.这些研究结果不仅揭示了单周期控制Cuk PFC变换器中的中尺度分岔行为的本质,而且为系统电路参数的设计提供了理论依据.
基于单周期控制的自治性,建立了描述单周期控制Cuk功率因数校正(PFC)变换器动力学行为的非线性状态平均模型.在此基础上,采用谐波平衡法得出了该系统周期平衡态的近似解析表达式,继而通过判定Floquet乘子的变化趋势,准确地预测了该变换器首次失稳时分岔点的位置和类型,揭示了系统出现中尺度不稳定现象的物理机理.研究结果表明,该变换器周期闭轨稳定性的丧失,即Neimark-Sacker分岔的发生是最终导致中尺度振荡现象产生的根本原因.最后,电路实验验证了理论分析的正确性.这些研究结果不仅揭示了单周期控制Cuk PFC变换器中的中尺度分岔行为的本质,而且为系统电路参数的设计提供了理论依据.
分析了摩擦力对竖直振动台面上完全非弹性蹦球动力学行为的影响.当控制参数Γ由1逐渐增大时,作用在蹦球上的恒定摩擦力不会改变倍周期分岔的序列,但会使倍周期分岔点的数值变大.与无摩擦力时的情况相比,在飞行时间的分岔图中也存在倍周期分岔密集区,只是被横向拉伸纵向压缩,且具有不同的分形特性.与受振颗粒体系中的倍周期分岔过程做了比较,发现当摩擦力取值为颗粒总重量的20%—30%时两者符合很好.
分析了摩擦力对竖直振动台面上完全非弹性蹦球动力学行为的影响.当控制参数Γ由1逐渐增大时,作用在蹦球上的恒定摩擦力不会改变倍周期分岔的序列,但会使倍周期分岔点的数值变大.与无摩擦力时的情况相比,在飞行时间的分岔图中也存在倍周期分岔密集区,只是被横向拉伸纵向压缩,且具有不同的分形特性.与受振颗粒体系中的倍周期分岔过程做了比较,发现当摩擦力取值为颗粒总重量的20%—30%时两者符合很好.
散射介质中层间杂质检测是一个非常重要的研究课题.改进现有的Monte Carlo方法,模拟大量光子在散射介质中的传输,得到入射光强、杂质埋藏深度、介质折射率、介质散射系数和各向异性因子对光学透反射成像法检测层间杂质效率的影响规律.结果表明,入射光强、杂质埋藏深度和介质折射率对透反射成像检测结果均有影响,且影响规律相似.增加入射光强、减小杂质埋藏深度或减小介质折射率均可提高反射光成像的检测效率;增大入射光强、减小介质折射率、减小介质散射系数或增大各向异性因子均可提高透射光成像的检测效率.这些规律对散射介质中层间杂质检测具有一定指导意义.
散射介质中层间杂质检测是一个非常重要的研究课题.改进现有的Monte Carlo方法,模拟大量光子在散射介质中的传输,得到入射光强、杂质埋藏深度、介质折射率、介质散射系数和各向异性因子对光学透反射成像法检测层间杂质效率的影响规律.结果表明,入射光强、杂质埋藏深度和介质折射率对透反射成像检测结果均有影响,且影响规律相似.增加入射光强、减小杂质埋藏深度或减小介质折射率均可提高反射光成像的检测效率;增大入射光强、减小介质折射率、减小介质散射系数或增大各向异性因子均可提高透射光成像的检测效率.这些规律对散射介质中层间杂质检测具有一定指导意义.
提出了采用截止波导法与谐波混频法相结合的方式,进行0.14 THz高功率短脉冲的频率测量.首先将两个截止频率分别为0.125和0.15 THz的非标准矩形波导作为接收端,通过截止波导滤波法获得了太赫兹辐射源的频率范围.然后根据已知的频率范围,将本振频率选择为15—20 GHz,则谐波混频的谐波次数确定为8.随后的Ka波段的脉冲测试和0.14 THz连续波测试表明,该8次谐波混频器可用于0.14 THz脉冲的混频测量.最后,0.14 THz脉冲频率测量实验给出了太赫兹辐射源的准确频率为0.1465 THz.该方法大大降低了对本振信号的频率要求,且结果准确可信,为长波段太赫兹脉冲的频率测量提供了一种新的思路.
提出了采用截止波导法与谐波混频法相结合的方式,进行0.14 THz高功率短脉冲的频率测量.首先将两个截止频率分别为0.125和0.15 THz的非标准矩形波导作为接收端,通过截止波导滤波法获得了太赫兹辐射源的频率范围.然后根据已知的频率范围,将本振频率选择为15—20 GHz,则谐波混频的谐波次数确定为8.随后的Ka波段的脉冲测试和0.14 THz连续波测试表明,该8次谐波混频器可用于0.14 THz脉冲的混频测量.最后,0.14 THz脉冲频率测量实验给出了太赫兹辐射源的准确频率为0.1465 THz.该方法大大降低了对本振信号的频率要求,且结果准确可信,为长波段太赫兹脉冲的频率测量提供了一种新的思路.
在CS30回旋加速器上利用27MeV的α粒子束轰击天然金属Yb箔.对辐照样品进行了分析,确定产生的178Hfm2核素约1.5×1011个,辨识出样品中主要的长寿命核素,并推断产生这些核素可能的核反应通道.基于对样品放射性剂量率跟踪监测结果,初步确定了样品的冷却时间.这些研究结果一方面验证了所选择的制备途径是可行的,另一方面也为进一步开展该核素制备技术研究提供了参考依据.
在CS30回旋加速器上利用27MeV的α粒子束轰击天然金属Yb箔.对辐照样品进行了分析,确定产生的178Hfm2核素约1.5×1011个,辨识出样品中主要的长寿命核素,并推断产生这些核素可能的核反应通道.基于对样品放射性剂量率跟踪监测结果,初步确定了样品的冷却时间.这些研究结果一方面验证了所选择的制备途径是可行的,另一方面也为进一步开展该核素制备技术研究提供了参考依据.
利用反应显微谱仪对70 keV He2+-He转移电离过程中的出射电子进行了成像,研究了出射电子的空间速度分布特征.结果表明:电子主要集中在散射平面内;在散射平面内,电子速度分布介于零与入射离子速度Vp之间(即前向出射)且在散射离子和靶核核间轴处有一极小值,呈现出典型的双峰结构.出射电子的上述分布特征可由出射电子波函数σ振幅和π振幅的干涉进行定性解释,σ振幅和π振幅对出射电子波函数的贡献与碰撞参数相关.在小碰撞参数下,π振幅的贡献更加明显;而在大碰撞参数下,σ振幅的贡献更加显著.
利用反应显微谱仪对70 keV He2+-He转移电离过程中的出射电子进行了成像,研究了出射电子的空间速度分布特征.结果表明:电子主要集中在散射平面内;在散射平面内,电子速度分布介于零与入射离子速度Vp之间(即前向出射)且在散射离子和靶核核间轴处有一极小值,呈现出典型的双峰结构.出射电子的上述分布特征可由出射电子波函数σ振幅和π振幅的干涉进行定性解释,σ振幅和π振幅对出射电子波函数的贡献与碰撞参数相关.在小碰撞参数下,π振幅的贡献更加明显;而在大碰撞参数下,σ振幅的贡献更加显著.
研究了螺旋线行波管中电子注与高频场互作用的时域理论.电子对场的作用由高频场方程和空间电荷场方程模拟,场对电子注的作用由运动方程模拟.在螺旋导电面模型下利用安培环路定理和法拉第电磁感应定律得到了时域高频场方程.利用空间电荷波模型处理空间电荷场,得到了空间电荷场方程.将高频场和空间电荷场代入洛伦兹力方程,得到了运动方程.利用耦合阻抗处理高频场方程的激励源,使得高频场方程的求解能够借助诸如HFSS或HFCS等高频模拟软件来实现,增强了时域理论的灵活性.基于上述理论,编写软件数值模拟某螺旋线行波管,验证了时域理论的可行性.
研究了螺旋线行波管中电子注与高频场互作用的时域理论.电子对场的作用由高频场方程和空间电荷场方程模拟,场对电子注的作用由运动方程模拟.在螺旋导电面模型下利用安培环路定理和法拉第电磁感应定律得到了时域高频场方程.利用空间电荷波模型处理空间电荷场,得到了空间电荷场方程.将高频场和空间电荷场代入洛伦兹力方程,得到了运动方程.利用耦合阻抗处理高频场方程的激励源,使得高频场方程的求解能够借助诸如HFSS或HFCS等高频模拟软件来实现,增强了时域理论的灵活性.基于上述理论,编写软件数值模拟某螺旋线行波管,验证了时域理论的可行性.
行波管再生反馈振荡器是一种新型太赫兹源器件.基于560 GHz折叠波导慢波结构,对此类器件的工作原理与物理模型进行分析阐述.采用非线性互作用模型对行波管再生反馈振荡器进行详细振荡过程模拟.模拟结果显示,在550—600 GHz频率下可以获得稳态振荡频率,并在560 GHz处获得最大单频输出功率.结果同时表明,振荡频率随电子注电压发生跳变现象,并简要分析了其产生原因.
行波管再生反馈振荡器是一种新型太赫兹源器件.基于560 GHz折叠波导慢波结构,对此类器件的工作原理与物理模型进行分析阐述.采用非线性互作用模型对行波管再生反馈振荡器进行详细振荡过程模拟.模拟结果显示,在550—600 GHz频率下可以获得稳态振荡频率,并在560 GHz处获得最大单频输出功率.结果同时表明,振荡频率随电子注电压发生跳变现象,并简要分析了其产生原因.
对拉盖尔-高斯光束经多圆孔衍射屏在远场平面上形成的干涉光场的相位和零值线进行了计算模拟.当入射光束的轨道角动量量子数为零时,实部零值线与虚部零值线在干涉光场中心点不相交,因而在该点上不能形成相位涡旋.当入射光束的轨道角动量量子数为+1和-1时,实部零值线与虚部零值线在干涉光场中心垂直并相交,干涉光场相应位置处的相位涡旋的符号相反.当入射光束的轨道角动量量子数为±2和±3时,有四条零值线相交于干涉光场的中心点上,并且实部零值线和虚部零值线交替分布,该交点处形成的相位涡旋的拓扑荷的值恰好与拉盖尔-高斯光束的轨道角动量量子数相等.这种结果可以用来测量涡旋光束的轨道角动量.
对拉盖尔-高斯光束经多圆孔衍射屏在远场平面上形成的干涉光场的相位和零值线进行了计算模拟.当入射光束的轨道角动量量子数为零时,实部零值线与虚部零值线在干涉光场中心点不相交,因而在该点上不能形成相位涡旋.当入射光束的轨道角动量量子数为+1和-1时,实部零值线与虚部零值线在干涉光场中心垂直并相交,干涉光场相应位置处的相位涡旋的符号相反.当入射光束的轨道角动量量子数为±2和±3时,有四条零值线相交于干涉光场的中心点上,并且实部零值线和虚部零值线交替分布,该交点处形成的相位涡旋的拓扑荷的值恰好与拉盖尔-高斯光束的轨道角动量量子数相等.这种结果可以用来测量涡旋光束的轨道角动量.
提出了少量投影数字全息层析重建技术.以具有轴对称结构的光纤和非轴对称结构的石膏头像为实验样本,开展了基于单幅全息图和代数迭代重建算法的层析重建模拟分析及实验研究.模拟分析表明,代数迭代重建算法中的加权因子以及松弛因子对重建图像质量影响显著,因此对加权因子采用非线性加权计算方法,以及通过多次模拟重建结果的比较选择合适的松弛因子.层析重建实验结果表明,无论被测物体是轴对称结构或是非轴对称结构,少量投影数字全息层析重建是可行的,也是有效的.这为下一步针对生物样本内部多层折射率检测和基于单幅层析全息图实现三向实时数字全息层析重建技术研究提供了必要的基础.
提出了少量投影数字全息层析重建技术.以具有轴对称结构的光纤和非轴对称结构的石膏头像为实验样本,开展了基于单幅全息图和代数迭代重建算法的层析重建模拟分析及实验研究.模拟分析表明,代数迭代重建算法中的加权因子以及松弛因子对重建图像质量影响显著,因此对加权因子采用非线性加权计算方法,以及通过多次模拟重建结果的比较选择合适的松弛因子.层析重建实验结果表明,无论被测物体是轴对称结构或是非轴对称结构,少量投影数字全息层析重建是可行的,也是有效的.这为下一步针对生物样本内部多层折射率检测和基于单幅层析全息图实现三向实时数字全息层析重建技术研究提供了必要的基础.
在以三个电偶极跃迁构成简并N型四能级系统中,利用密度矩阵方程计算了介质对探测场的吸收,研究了激光场拉比相位对吸收的影响.结果表明:介质对探测场的吸收和放大取决于控制场和信号场的拉比相位,且吸收和放大随控制场、信号场的拉比相位改变而作周期性变化,周期为2π;而探测场的拉比相位变化对吸收没有影响.同时,控制场、信号场拉比相位对吸收的影响是相同的,而且拉比相位主要影响原子相干,对原子布居影响不大.
在以三个电偶极跃迁构成简并N型四能级系统中,利用密度矩阵方程计算了介质对探测场的吸收,研究了激光场拉比相位对吸收的影响.结果表明:介质对探测场的吸收和放大取决于控制场和信号场的拉比相位,且吸收和放大随控制场、信号场的拉比相位改变而作周期性变化,周期为2π;而探测场的拉比相位变化对吸收没有影响.同时,控制场、信号场拉比相位对吸收的影响是相同的,而且拉比相位主要影响原子相干,对原子布居影响不大.
给出了依赖强度耦合双模多光子过程Jaynes-Cummings模型的有效哈密顿量.在强场条件下,分别用量子约化熵和量子相对熵研究了上述模型中原子与场之间的纠缠以及双模相干场的模间纠缠演化.研究表明,这两类纠缠演化均与原子跃迁时吸收(或发射)的光子数k密切相关.同时,还揭示了双光子过程(k=1)和多光子过程(k≥2)中不同的纠缠特性.讨论了纠缠态的制备, 制备了与时间无关的原子-场的Einstein-Podolsky-Rosen态和双模相干场的模间纠缠态.
给出了依赖强度耦合双模多光子过程Jaynes-Cummings模型的有效哈密顿量.在强场条件下,分别用量子约化熵和量子相对熵研究了上述模型中原子与场之间的纠缠以及双模相干场的模间纠缠演化.研究表明,这两类纠缠演化均与原子跃迁时吸收(或发射)的光子数k密切相关.同时,还揭示了双光子过程(k=1)和多光子过程(k≥2)中不同的纠缠特性.讨论了纠缠态的制备, 制备了与时间无关的原子-场的Einstein-Podolsky-Rosen态和双模相干场的模间纠缠态.
基于赝自旋算符的关联所对应的贝尔算符期待值,研究了各种双模非经典态(纠缠相干态、对相干态以及双模压缩真空态)在非简并双光子Jaynes-Cummings模型中贝尔非定域性的动力学特性.结果表明:对于纠缠相干态,贝尔非定域性的演化与双模场平均光子数的大小息息相关;对于对相干态和双模压缩真空态,贝尔非定域性会在有限的时间内完全消失,之后又基本上复原到初始值,呈现出周期性振荡现象.
基于赝自旋算符的关联所对应的贝尔算符期待值,研究了各种双模非经典态(纠缠相干态、对相干态以及双模压缩真空态)在非简并双光子Jaynes-Cummings模型中贝尔非定域性的动力学特性.结果表明:对于纠缠相干态,贝尔非定域性的演化与双模场平均光子数的大小息息相关;对于对相干态和双模压缩真空态,贝尔非定域性会在有限的时间内完全消失,之后又基本上复原到初始值,呈现出周期性振荡现象.
建立了激光二极管阵列(LDA)端面抽运棒状激光介质的数值模型.考虑到介质与空气的对流换热和介质的热力学参数随温度的变化,根据经典热传导方程和热弹性方程,运用有限元法得出了复合棒状介质和未复合棒状介质内瞬态温度、热应力和应变的时空分布,分析了温度、热应力和应变随抽运功率、换热系数和时间的变化规律.结果表明,复合棒的最高温度、最大张应力和最大轴向应变的位置与未复合棒不同,并且数值分别为未复合棒的73%,60%和33%.由此可知,利用复合棒可极大地减小热效应的影响.理论分析结果可为LDA抽运固体激光器的结构优化设计和实验研究提供理论参考.
建立了激光二极管阵列(LDA)端面抽运棒状激光介质的数值模型.考虑到介质与空气的对流换热和介质的热力学参数随温度的变化,根据经典热传导方程和热弹性方程,运用有限元法得出了复合棒状介质和未复合棒状介质内瞬态温度、热应力和应变的时空分布,分析了温度、热应力和应变随抽运功率、换热系数和时间的变化规律.结果表明,复合棒的最高温度、最大张应力和最大轴向应变的位置与未复合棒不同,并且数值分别为未复合棒的73%,60%和33%.由此可知,利用复合棒可极大地减小热效应的影响.理论分析结果可为LDA抽运固体激光器的结构优化设计和实验研究提供理论参考.
对氧化限制型外腔式光子晶体垂直腔面发射激光器注入到有源区的电流密度分布进行了分析研究.提出三维电流分布计算模型,研究了光子晶体结构对电流密度分布和器件串联电阻的影响.研究发现,光子晶体孔刻蚀深度越深,电流分布圆对称性越差,引起的串联电阻越大.不同光子晶体图案对电流分布的均匀性和圆对称性也有很大的影响.该模型对于研究、设计氧化限制型外腔式光子晶体垂直腔面发射激光器提供了一个有用的分析方法.
对氧化限制型外腔式光子晶体垂直腔面发射激光器注入到有源区的电流密度分布进行了分析研究.提出三维电流分布计算模型,研究了光子晶体结构对电流密度分布和器件串联电阻的影响.研究发现,光子晶体孔刻蚀深度越深,电流分布圆对称性越差,引起的串联电阻越大.不同光子晶体图案对电流分布的均匀性和圆对称性也有很大的影响.该模型对于研究、设计氧化限制型外腔式光子晶体垂直腔面发射激光器提供了一个有用的分析方法.
利用微腔之间的立体耦合,提出了基于无源材料硅的双层光子晶体薄板H1(DLPCS-H1)腔,薄板之间为空气层.使用三维时域有限差分方法和Padé近似方法分析了DLPCS-H1腔的偶极模的场分布和品质因子.通过对中间空气层高度的优化使DLPCS-H1腔的偶极模的品质因子得到了显著的提高,大约为单层光子晶体薄板H1腔的偶极模的品质因子的4倍.此外,还研究了三层光子晶体薄板H1腔,它的偶极模的品质因子约为单层光子晶体薄板H1腔的偶极模的品质因子的7倍.
利用微腔之间的立体耦合,提出了基于无源材料硅的双层光子晶体薄板H1(DLPCS-H1)腔,薄板之间为空气层.使用三维时域有限差分方法和Padé近似方法分析了DLPCS-H1腔的偶极模的场分布和品质因子.通过对中间空气层高度的优化使DLPCS-H1腔的偶极模的品质因子得到了显著的提高,大约为单层光子晶体薄板H1腔的偶极模的品质因子的4倍.此外,还研究了三层光子晶体薄板H1腔,它的偶极模的品质因子约为单层光子晶体薄板H1腔的偶极模的品质因子的7倍.
受激布里渊散射(SBS)介质——全氟聚醚(PFPE)不仅具有低吸收高负载的SBS特性,还具有低的流点或高的沸点,可适合于较宽温度范围之内工作.通过分析PFPE的化学结构,对PFPE具有良好的SBS特性及独特物理化学特性进行了解释.在连续Nd:YAG种子注入激光系统中选用HT230,DET和HS260三种PFPE进行了不同温度下SBS特性研究.结果表明,PFPE不仅具有良好的SBS特性,还可以在低温或高温条件下工作,这为不同温度下研究SBS相位共轭镜打下了良好的基础.
受激布里渊散射(SBS)介质——全氟聚醚(PFPE)不仅具有低吸收高负载的SBS特性,还具有低的流点或高的沸点,可适合于较宽温度范围之内工作.通过分析PFPE的化学结构,对PFPE具有良好的SBS特性及独特物理化学特性进行了解释.在连续Nd:YAG种子注入激光系统中选用HT230,DET和HS260三种PFPE进行了不同温度下SBS特性研究.结果表明,PFPE不仅具有良好的SBS特性,还可以在低温或高温条件下工作,这为不同温度下研究SBS相位共轭镜打下了良好的基础.
利用一维粒子模拟程序研究了超相对论激光脉冲与稠密等离子体相互作用得到的阿秒脉冲.从超相对论近似的角度分析了电子运动行为和高次谐波的产生,发现当等离子体密度一定时,随着无量纲相似参数S的减小,阿秒脉冲的转换效率呈先增大后减小的趋势,因此选择适当的光强就可以得到转换效率较高的阿秒脉冲.当S一定时,随着等离子体密度的增加,阿秒脉冲转换效率有增大的趋势.这说明用适当的光强照射更稠密度的等离子体靶面,可以产生更强的阿秒脉冲.
利用一维粒子模拟程序研究了超相对论激光脉冲与稠密等离子体相互作用得到的阿秒脉冲.从超相对论近似的角度分析了电子运动行为和高次谐波的产生,发现当等离子体密度一定时,随着无量纲相似参数S的减小,阿秒脉冲的转换效率呈先增大后减小的趋势,因此选择适当的光强就可以得到转换效率较高的阿秒脉冲.当S一定时,随着等离子体密度的增加,阿秒脉冲转换效率有增大的趋势.这说明用适当的光强照射更稠密度的等离子体靶面,可以产生更强的阿秒脉冲.
提出了基于传输线比拟模型的左手材料微结构设计方法,并对此进行了分析、验证.首先根据已有的具有左右手性质的基本传输线模型,通过类比构建了具有左手性质的新模型,进而通过定性分析传输线网络中的各元件与微结构连续介质构型的形状及尺寸的对应关系,推断出模型中各部分的具体尺寸,从而得到了一个合理的左手材料微结构构型及其对应的传输线比拟模型.对设计的模型进行了实验测试,验证了模型确实具有左手性质.最后,通过数值模拟和实验,研究了微结构的各个尺寸参数对材料出现左手性质的带宽和频段的影响,确定了微结构中对左手性质影响最大的尺寸参数.
提出了基于传输线比拟模型的左手材料微结构设计方法,并对此进行了分析、验证.首先根据已有的具有左右手性质的基本传输线模型,通过类比构建了具有左手性质的新模型,进而通过定性分析传输线网络中的各元件与微结构连续介质构型的形状及尺寸的对应关系,推断出模型中各部分的具体尺寸,从而得到了一个合理的左手材料微结构构型及其对应的传输线比拟模型.对设计的模型进行了实验测试,验证了模型确实具有左手性质.最后,通过数值模拟和实验,研究了微结构的各个尺寸参数对材料出现左手性质的带宽和频段的影响,确定了微结构中对左手性质影响最大的尺寸参数.
数值仿真研究了一种可调谐的双开口谐振环(DSRR)超材料.在平行入射的电磁波激励下,这种DSRR单元可以在不同的频段分别表现出磁谐振和电谐振.当外加电场E与DSRR的双开口平行时,DSRR受激励得到的磁谐振和电谐振强度最大.随着DSRR超材料沿外加磁场H方向顺时针旋转,其磁谐振和电谐振频率基本保持不变,但谐振强度均发生显著下降,同时对应透射相位的突变也逐渐降低.提出的超材料调谐方法只需要简单地旋转材料,而不需要改变原有超材料单元的结构或者增加额外的激励场,极大地简化了可调谐超材料的制备及应用,在电磁开关、相位调制等方面具有潜在的应用.同时,这种简单的方法有希望应用于更高频段的超材料调谐,可以有效地拓展太赫兹频段和光频段超材料的实际应用.
数值仿真研究了一种可调谐的双开口谐振环(DSRR)超材料.在平行入射的电磁波激励下,这种DSRR单元可以在不同的频段分别表现出磁谐振和电谐振.当外加电场E与DSRR的双开口平行时,DSRR受激励得到的磁谐振和电谐振强度最大.随着DSRR超材料沿外加磁场H方向顺时针旋转,其磁谐振和电谐振频率基本保持不变,但谐振强度均发生显著下降,同时对应透射相位的突变也逐渐降低.提出的超材料调谐方法只需要简单地旋转材料,而不需要改变原有超材料单元的结构或者增加额外的激励场,极大地简化了可调谐超材料的制备及应用,在电磁开关、相位调制等方面具有潜在的应用.同时,这种简单的方法有希望应用于更高频段的超材料调谐,可以有效地拓展太赫兹频段和光频段超材料的实际应用.
对金属-介质-金属的三层纳米三明治结构中的磁性等离子体模式特性进行了时域有限差分数值计算分析,并给出该类谐振器的品质因数变化规律.基于纳米三明治结构中的磁性等离子体模式对该种结构进行设计,研究几何构型参数以及介质材料折射率对磁性等离子体模式的调控规律.以电感电容等效电路近似理论对纳米三明治结构磁性等离子体模式谐振频率的变化规律进行理论解释,理论解释与数值计算结果符合很好.同时还研究了纳米三明治振荡器对电磁能量的限制,并从热和辐射两方面分析了该类结构的品质因数变化情况,可为基于磁性等离子体模式的新型波导及激光器结构的设计提供指导.
对金属-介质-金属的三层纳米三明治结构中的磁性等离子体模式特性进行了时域有限差分数值计算分析,并给出该类谐振器的品质因数变化规律.基于纳米三明治结构中的磁性等离子体模式对该种结构进行设计,研究几何构型参数以及介质材料折射率对磁性等离子体模式的调控规律.以电感电容等效电路近似理论对纳米三明治结构磁性等离子体模式谐振频率的变化规律进行理论解释,理论解释与数值计算结果符合很好.同时还研究了纳米三明治振荡器对电磁能量的限制,并从热和辐射两方面分析了该类结构的品质因数变化情况,可为基于磁性等离子体模式的新型波导及激光器结构的设计提供指导.
基于产生负介电常数的周期性金属线单元结构,讨论了金属线长度和宽度的变化对负介电常数的影响.在入射波的波矢 k 方向上放置两个单元结构,使两单元中的金属线响应入射波的磁场产生负磁导率,就可得到一维左手材料.若保持电边界条件的位置不变而调换波端口和磁边界条件位置,即入射波的波矢 k 转过90°角,两单元结构同样具有左手特性,从而可实现二维左手材料.
基于产生负介电常数的周期性金属线单元结构,讨论了金属线长度和宽度的变化对负介电常数的影响.在入射波的波矢 k 方向上放置两个单元结构,使两单元中的金属线响应入射波的磁场产生负磁导率,就可得到一维左手材料.若保持电边界条件的位置不变而调换波端口和磁边界条件位置,即入射波的波矢 k 转过90°角,两单元结构同样具有左手特性,从而可实现二维左手材料.
研究了一种新型高功率微波空间滤波器(双工器),该空间滤波器通过放置在天线近场的周期性金属圆柱阵列实现线极化波的反射和透射.通过对比研究低功率条件下放置该双工器前后的辐射方向图,发现该双工器对S波段微波的反射效率达到96%,对X波段微波的透射效率达到97%,隔离度分别达到25 dB以上,交叉耦合度在-25 dB以下.在S/X波段各自注入1.5 GW的高功率微波,脉冲宽度为100 ns的条件下,放置双工器后没有发现明显的微波脉冲缩短现象.
研究了一种新型高功率微波空间滤波器(双工器),该空间滤波器通过放置在天线近场的周期性金属圆柱阵列实现线极化波的反射和透射.通过对比研究低功率条件下放置该双工器前后的辐射方向图,发现该双工器对S波段微波的反射效率达到96%,对X波段微波的透射效率达到97%,隔离度分别达到25 dB以上,交叉耦合度在-25 dB以下.在S/X波段各自注入1.5 GW的高功率微波,脉冲宽度为100 ns的条件下,放置双工器后没有发现明显的微波脉冲缩短现象.
建立了Bragg光纤光栅傅里叶模式耦合理论.在分析光纤光栅的耦合模时,发现了耦合模式的振幅系数间存在傅里叶变换关系.推导了将傅里叶变换和模式耦合融合在一起的Bragg光纤光栅反射谱和透射谱的通用表达式.该理论是用傅里叶变换得到Bragg光纤光栅折射率微扰的空域谱,再对该空域谱进行模式耦合分析计算,从而得到Bragg光纤光栅的光谱特性.根据该理论,仿真分析了Bragg光纤光栅的谱特性,与耦合模理论、直接傅里叶变换法进行了对比分析.结果表明,傅里叶模式耦合理论与传统的耦合模理论及实际Bragg光纤光栅的光谱特性一致,具有简单、清晰、直接、精确和分析效率高的特点,可分析任意轴向折射率微扰分布的Bragg光纤光栅结构.
建立了Bragg光纤光栅傅里叶模式耦合理论.在分析光纤光栅的耦合模时,发现了耦合模式的振幅系数间存在傅里叶变换关系.推导了将傅里叶变换和模式耦合融合在一起的Bragg光纤光栅反射谱和透射谱的通用表达式.该理论是用傅里叶变换得到Bragg光纤光栅折射率微扰的空域谱,再对该空域谱进行模式耦合分析计算,从而得到Bragg光纤光栅的光谱特性.根据该理论,仿真分析了Bragg光纤光栅的谱特性,与耦合模理论、直接傅里叶变换法进行了对比分析.结果表明,傅里叶模式耦合理论与传统的耦合模理论及实际Bragg光纤光栅的光谱特性一致,具有简单、清晰、直接、精确和分析效率高的特点,可分析任意轴向折射率微扰分布的Bragg光纤光栅结构.
建立了长周期光纤光栅傅里叶模式耦合理论.在分析同向模式耦合时,发现了同向耦合模式的振幅系数间存在傅里叶变换关系.推导了长周期光纤光栅的同向耦合谱和透射谱的通用表达式.该理论是用傅里叶变换分析得出长周期光纤光栅折射率微扰的空域谱,再对该空域谱进行模式同向耦合分析,从而得到长周期光纤光栅光谱特性的通用表达式.根据该理论模拟分析了长周期光纤光栅在不同长度和微扰幅值时的光谱特性,与传统耦合模理论进行了对比分析.结果表明,该长周期光纤光栅傅里叶模式耦合理论具有简单、精确和高效的特点,与实际长周期光纤光栅的透射谱特性一致.应用该理论可分析无过耦合的任意轴向折射率微扰分布的长周期光纤光栅光谱特性.
建立了长周期光纤光栅傅里叶模式耦合理论.在分析同向模式耦合时,发现了同向耦合模式的振幅系数间存在傅里叶变换关系.推导了长周期光纤光栅的同向耦合谱和透射谱的通用表达式.该理论是用傅里叶变换分析得出长周期光纤光栅折射率微扰的空域谱,再对该空域谱进行模式同向耦合分析,从而得到长周期光纤光栅光谱特性的通用表达式.根据该理论模拟分析了长周期光纤光栅在不同长度和微扰幅值时的光谱特性,与传统耦合模理论进行了对比分析.结果表明,该长周期光纤光栅傅里叶模式耦合理论具有简单、精确和高效的特点,与实际长周期光纤光栅的透射谱特性一致.应用该理论可分析无过耦合的任意轴向折射率微扰分布的长周期光纤光栅光谱特性.
快速有效地获得多级联光纤光栅法布里-珀罗(F-P)腔的光谱特性,是优化设计基于上述结构建立的级联多波长激光器、放大器等各种光器件以及复杂分布式传感网络的重要基础和保障.将V-I传输矩阵法用于光纤光栅F-P腔反射光谱特性的分析,并建立了V-I传输矩阵模型.采用该模型对三种不同结构的光纤光栅F-P腔在不同参数下的光谱特性进行分析,并与传统多层膜法的分析结果相比较,表明V-I传输矩阵法能够在保证分析精度的前提下大大节省运算时间.实验结果表明,V-I传输矩阵法对光纤光栅F-P腔谱特性的分析结果比耦合模法更准确.
快速有效地获得多级联光纤光栅法布里-珀罗(F-P)腔的光谱特性,是优化设计基于上述结构建立的级联多波长激光器、放大器等各种光器件以及复杂分布式传感网络的重要基础和保障.将V-I传输矩阵法用于光纤光栅F-P腔反射光谱特性的分析,并建立了V-I传输矩阵模型.采用该模型对三种不同结构的光纤光栅F-P腔在不同参数下的光谱特性进行分析,并与传统多层膜法的分析结果相比较,表明V-I传输矩阵法能够在保证分析精度的前提下大大节省运算时间.实验结果表明,V-I传输矩阵法对光纤光栅F-P腔谱特性的分析结果比耦合模法更准确.
基于耦合模理论,得出了三角结构三芯光子晶体光纤(TTC-PCF)的耦合模方程.数值模拟研究了该结构中纤芯间的定向耦合特性,分析了光纤结构及入射波长对耦合系数的影响以及入射光振幅比对纤芯间能量耦合特性的影响.结果表明,通过调节入射光振幅比可实现对纤芯间耦合强度的连续调节.对比了耦合模理论与束传播法得到的结果,两者表现出很好的一致性.结合TTC-PCF展现的独特耦合传输性能,讨论了其在耦合强度连续可调光纤定向耦合器和大模场光纤激光器的设计与制备等方面的可能应用前景.
基于耦合模理论,得出了三角结构三芯光子晶体光纤(TTC-PCF)的耦合模方程.数值模拟研究了该结构中纤芯间的定向耦合特性,分析了光纤结构及入射波长对耦合系数的影响以及入射光振幅比对纤芯间能量耦合特性的影响.结果表明,通过调节入射光振幅比可实现对纤芯间耦合强度的连续调节.对比了耦合模理论与束传播法得到的结果,两者表现出很好的一致性.结合TTC-PCF展现的独特耦合传输性能,讨论了其在耦合强度连续可调光纤定向耦合器和大模场光纤激光器的设计与制备等方面的可能应用前景.
设计了一种新型矩形点阵光子晶体光纤,该光纤纤芯缺失一根空气柱,包层沿光纤长度方向在普通矩形点阵光子晶体光纤中每两列之间隔一行插入一列空气孔而形成正方形网孔结构. 采用全矢量有限元法并结合各向异性完美匹配边界条件,对该光纤的色散、双折射和约束损耗进行了数值模拟. 结果发现,该光纤具有高双折射负色散效应和较强的模约束能力,约束损耗小于10-2 dB ·m-1,通过改变光纤结构参数(即空气孔间隔Λ和相对孔间隔d/Λ),可以调节该光纤高双折射负色散工作波长. 若调整光纤结构参数Λ=2.0 μm,d/Λ=0.4,该光纤在C波段(1.53—1.565 μm)呈现负色散并具有负色散斜率,双折射高达10-2,非线性系数接近55 km-1W-1. 该光纤将在保偏光通信、色散补偿以及基于四波混频的波长转换器设计等方面具有重要的应用.
设计了一种新型矩形点阵光子晶体光纤,该光纤纤芯缺失一根空气柱,包层沿光纤长度方向在普通矩形点阵光子晶体光纤中每两列之间隔一行插入一列空气孔而形成正方形网孔结构. 采用全矢量有限元法并结合各向异性完美匹配边界条件,对该光纤的色散、双折射和约束损耗进行了数值模拟. 结果发现,该光纤具有高双折射负色散效应和较强的模约束能力,约束损耗小于10-2 dB ·m-1,通过改变光纤结构参数(即空气孔间隔Λ和相对孔间隔d/Λ),可以调节该光纤高双折射负色散工作波长. 若调整光纤结构参数Λ=2.0 μm,d/Λ=0.4,该光纤在C波段(1.53—1.565 μm)呈现负色散并具有负色散斜率,双折射高达10-2,非线性系数接近55 km-1W-1. 该光纤将在保偏光通信、色散补偿以及基于四波混频的波长转换器设计等方面具有重要的应用.
.布拉格光纤是一种一维光子晶体带隙导引光纤.针对布拉格光纤在气体痕量检测领域的应用,设计了传输波段中心波长位于中红外波段的半导体玻璃/有机聚合物基空心布拉格光纤.通过预制棒熔拉法,制备出了中红外空心布拉格光纤的样品.传输谱和弯曲特性测试表明布拉格光纤样品具有两个明显的传输波段,体现了带隙导光的特征.低阶传输波段的中心波长为4.4 μm.
.布拉格光纤是一种一维光子晶体带隙导引光纤.针对布拉格光纤在气体痕量检测领域的应用,设计了传输波段中心波长位于中红外波段的半导体玻璃/有机聚合物基空心布拉格光纤.通过预制棒熔拉法,制备出了中红外空心布拉格光纤的样品.传输谱和弯曲特性测试表明布拉格光纤样品具有两个明显的传输波段,体现了带隙导光的特征.低阶传输波段的中心波长为4.4 μm.
为了克服基于分布源边界点法的近场声全息技术在小全息孔径条件下造成的重建误差问题,提出了基于分布源边界点法的局部近场声全息技术.该技术运用分布源边界点法,采用测得的较小全息面上的声压数据来外推较大全息面上的声压数据,然后用外推的数据进行全息重建.仿真和实验结果验证了采用该技术在小全息孔径条件下进行声源局部重建的有效性.
为了克服基于分布源边界点法的近场声全息技术在小全息孔径条件下造成的重建误差问题,提出了基于分布源边界点法的局部近场声全息技术.该技术运用分布源边界点法,采用测得的较小全息面上的声压数据来外推较大全息面上的声压数据,然后用外推的数据进行全息重建.仿真和实验结果验证了采用该技术在小全息孔径条件下进行声源局部重建的有效性.
推广Biot-Tsiklauri声学模型的同时借鉴Dvorkin和Nur的工作,建立了具有任意孔径分布并顾及喷射流动机制的非牛顿流体饱和孔隙介质声学模型,研究了非牛顿流体(Maxwell流体)饱和孔隙介质中的弹性波的衰减和频散特性.着重讨论充孔隙Maxwell流体的非牛顿流效应对弹性波的频散和衰减的影响.研究表明,饱和流体的非牛顿流效应和喷射流动机制均是引起弹性波波频散和衰减的重要因素.依据非牛顿流体(Maxwell流体)饱和各向同性孔隙介质的Biot-喷射流声学模型,喷射流动只影响纵波的频散和衰减,而饱和流体的非牛顿流效应不仅影响纵波,而且还影响横波的频散和衰减.
推广Biot-Tsiklauri声学模型的同时借鉴Dvorkin和Nur的工作,建立了具有任意孔径分布并顾及喷射流动机制的非牛顿流体饱和孔隙介质声学模型,研究了非牛顿流体(Maxwell流体)饱和孔隙介质中的弹性波的衰减和频散特性.着重讨论充孔隙Maxwell流体的非牛顿流效应对弹性波的频散和衰减的影响.研究表明,饱和流体的非牛顿流效应和喷射流动机制均是引起弹性波波频散和衰减的重要因素.依据非牛顿流体(Maxwell流体)饱和各向同性孔隙介质的Biot-喷射流声学模型,喷射流动只影响纵波的频散和衰减,而饱和流体的非牛顿流效应不仅影响纵波,而且还影响横波的频散和衰减.
基于时域有限差分算法将大气中近似到二阶微小项的非线性声波波动方程进行离散化,得到了模拟采用的差分波动方程.在此基础上,数值模拟了初始声压强弱不同的5个点声源组成的线阵列垂直或斜向辐射的连续正弦波在大气中传播时二维声场的分布情况.将线性条件下的模拟结果与非线性条件下的模拟结果进行比较后发现:弱非线性会对声场的分布和阵列聚焦增益产生一定的影响,使声场分布波形比线性条件下的声场分布波形更加靠近阵列,聚焦效果变差;强非线性会使波形发生更严重畸变,这是由于产生了基频以外的其他频率声波引起的;非线性对斜向传播时声场分布的影响与垂直传播时的影响效果基本相同,但由于斜向辐射时的声波几何扩展造成的轴向声压衰减要大于垂直辐射时的轴向声压衰减,因此聚焦增益和强非线性的影响都将小于垂直辐射时的情况.
基于时域有限差分算法将大气中近似到二阶微小项的非线性声波波动方程进行离散化,得到了模拟采用的差分波动方程.在此基础上,数值模拟了初始声压强弱不同的5个点声源组成的线阵列垂直或斜向辐射的连续正弦波在大气中传播时二维声场的分布情况.将线性条件下的模拟结果与非线性条件下的模拟结果进行比较后发现:弱非线性会对声场的分布和阵列聚焦增益产生一定的影响,使声场分布波形比线性条件下的声场分布波形更加靠近阵列,聚焦效果变差;强非线性会使波形发生更严重畸变,这是由于产生了基频以外的其他频率声波引起的;非线性对斜向传播时声场分布的影响与垂直传播时的影响效果基本相同,但由于斜向辐射时的声波几何扩展造成的轴向声压衰减要大于垂直辐射时的轴向声压衰减,因此聚焦增益和强非线性的影响都将小于垂直辐射时的情况.
对制冷剂二氟乙烷(HFC-152a)在内径为8 mm的水平管内进行了两相流动沸腾摩擦压降的实验测量.实验测量的压力范围为0.19—0.41 MPa,热流密度范围为14—62 kW/m2,流量范围为128—200 kg/m2s.实验测量表明:HFC-152a的两相摩擦压降随质量流量、质量含气率的增大而增大;热流密度则对摩擦压降的直接影响很小,但通过影响两相流流型间接影响了摩擦压降;当流型由分层流动转变为半环状流或环状流时,总压降中加速压降所占比例有所减小,而摩擦压降所占比例则有所增大;摩擦压降随饱和压力的增大而减小.使用两个应用广泛的压降计算式进行了计算.实验测试结果与计算结果对比后发现,Friedel模型与实验结果偏差较大,而Müller-Steinhagen-Heck模型则与实验结果符合较好.
对制冷剂二氟乙烷(HFC-152a)在内径为8 mm的水平管内进行了两相流动沸腾摩擦压降的实验测量.实验测量的压力范围为0.19—0.41 MPa,热流密度范围为14—62 kW/m2,流量范围为128—200 kg/m2s.实验测量表明:HFC-152a的两相摩擦压降随质量流量、质量含气率的增大而增大;热流密度则对摩擦压降的直接影响很小,但通过影响两相流流型间接影响了摩擦压降;当流型由分层流动转变为半环状流或环状流时,总压降中加速压降所占比例有所减小,而摩擦压降所占比例则有所增大;摩擦压降随饱和压力的增大而减小.使用两个应用广泛的压降计算式进行了计算.实验测试结果与计算结果对比后发现,Friedel模型与实验结果偏差较大,而Müller-Steinhagen-Heck模型则与实验结果符合较好.
真空背压的变化会改变进入霍尔推力器放电通道内的背景气体量,对工质的电离、电子的传导等物理过程产生影响,从而进一步影响到推力器的宏观放电特性.为分析真空背压对推力器放电的影响规律,通过向真空罐输入流量可控的氪气改变真空背压,在不同真空背压下测量通道内原子、离子的发光特性以及出口处离子流的伏安特性.分析结果表明:背景气体返流对通道内工质放电过程具有全局性的影响,提高背压会使通道内的电子温度降低、电离效率降低,并会在通道内形成一个新的电离区,且背压越高,该电离区距推力器阳极越近.
真空背压的变化会改变进入霍尔推力器放电通道内的背景气体量,对工质的电离、电子的传导等物理过程产生影响,从而进一步影响到推力器的宏观放电特性.为分析真空背压对推力器放电的影响规律,通过向真空罐输入流量可控的氪气改变真空背压,在不同真空背压下测量通道内原子、离子的发光特性以及出口处离子流的伏安特性.分析结果表明:背景气体返流对通道内工质放电过程具有全局性的影响,提高背压会使通道内的电子温度降低、电离效率降低,并会在通道内形成一个新的电离区,且背压越高,该电离区距推力器阳极越近.
平面型丝阵负载是近年来Z箍缩实验中研究较多的一种非圆柱型丝阵负载.基于平面型丝阵中单丝的静磁场分析并结合单丝的径向运动方程,计算获得了聚爆过程中负载电流在每根丝上分配、每根丝所受磁场力、丝阵负载区磁场分布、负载总电感及聚爆过程中负载动能变化等规律.模拟计算了平面型丝阵负载Z箍缩聚爆轨迹及聚爆时间,并与'强光一号'加速器上进行的平面型丝阵实验结果进行了对比.结果表明,基于单丝行为的模拟误差约为10%,可较为准确地获得平面型丝阵负载聚爆时间.计算结果有助于深入理解平面型丝阵负载Z箍缩物理过程,同时该模型可用于平面型丝阵负载参数设计.
平面型丝阵负载是近年来Z箍缩实验中研究较多的一种非圆柱型丝阵负载.基于平面型丝阵中单丝的静磁场分析并结合单丝的径向运动方程,计算获得了聚爆过程中负载电流在每根丝上分配、每根丝所受磁场力、丝阵负载区磁场分布、负载总电感及聚爆过程中负载动能变化等规律.模拟计算了平面型丝阵负载Z箍缩聚爆轨迹及聚爆时间,并与'强光一号'加速器上进行的平面型丝阵实验结果进行了对比.结果表明,基于单丝行为的模拟误差约为10%,可较为准确地获得平面型丝阵负载聚爆时间.计算结果有助于深入理解平面型丝阵负载Z箍缩物理过程,同时该模型可用于平面型丝阵负载参数设计.
研究了在磁约束聚变环境中不同等离子体参数下尘埃粒子的带电、运动及温度特性.研究表明:电子温度与离子温度比对尘埃带电量有明显的影响;二次电子发射会显著减少尘埃带电量;尘埃充电的弛豫时间比在实验室加工等离子中要短得多.在考虑离子拖曳力作用下,尘埃粒子的速度可达102 m[DK]·s-1的量级;针对碳材料计算得到粒子的寿命达毫秒量级.这些数值研究结果与实验观测结果相一致.
研究了在磁约束聚变环境中不同等离子体参数下尘埃粒子的带电、运动及温度特性.研究表明:电子温度与离子温度比对尘埃带电量有明显的影响;二次电子发射会显著减少尘埃带电量;尘埃充电的弛豫时间比在实验室加工等离子中要短得多.在考虑离子拖曳力作用下,尘埃粒子的速度可达102 m[DK]·s-1的量级;针对碳材料计算得到粒子的寿命达毫秒量级.这些数值研究结果与实验观测结果相一致.
电子回旋共振离子推力器属于静电型推力器,具有寿命长、比冲高、结构简单、可靠性高等优点,适用于深空探测等长时间空间飞行任务.放电室是一个关键部件,其内部通过电子回旋共振产生等离子体.针对放电室内等离子体流场建立飘移-扩散近似模型,采用迎风格式有限差分法对该模型进行数值求解,得到了放电室内不同时刻的等离子体流场分布及其演化规律.数值模拟结果可以为推力器的设计和实验研究提供有用信息.
电子回旋共振离子推力器属于静电型推力器,具有寿命长、比冲高、结构简单、可靠性高等优点,适用于深空探测等长时间空间飞行任务.放电室是一个关键部件,其内部通过电子回旋共振产生等离子体.针对放电室内等离子体流场建立飘移-扩散近似模型,采用迎风格式有限差分法对该模型进行数值求解,得到了放电室内不同时刻的等离子体流场分布及其演化规律.数值模拟结果可以为推力器的设计和实验研究提供有用信息.
MARED程序是模拟Z箍缩内爆过程的二维三温辐射磁流体力学程序,它适用于不同装置条件和不同负载参数.利用MARED程序对Z箍缩内爆进行模拟,结合丝阵Z箍缩实验分析表明:相同负载质量条件下,钨丝阵内爆产生的X射线辐射功率远大于铝丝阵产生的X射线功率;相同负载电流条件下,负载质量越大,计算得到的X射线功率越低;X射线功率随着负载电流增加而增加.MARED程序能够较好地反映Z箍缩内爆动力学过程,特别是不稳定性发展的二维图像,能够给出与不稳定性简化模型的理论分析及实验结果定性一致的演化规律.MARED程序模拟丝阵填充泡沫形成辐射场的初步计算得到了与Sandia实验室模拟Z装置上丝阵填充泡沫定性一致的结果.
MARED程序是模拟Z箍缩内爆过程的二维三温辐射磁流体力学程序,它适用于不同装置条件和不同负载参数.利用MARED程序对Z箍缩内爆进行模拟,结合丝阵Z箍缩实验分析表明:相同负载质量条件下,钨丝阵内爆产生的X射线辐射功率远大于铝丝阵产生的X射线功率;相同负载电流条件下,负载质量越大,计算得到的X射线功率越低;X射线功率随着负载电流增加而增加.MARED程序能够较好地反映Z箍缩内爆动力学过程,特别是不稳定性发展的二维图像,能够给出与不稳定性简化模型的理论分析及实验结果定性一致的演化规律.MARED程序模拟丝阵填充泡沫形成辐射场的初步计算得到了与Sandia实验室模拟Z装置上丝阵填充泡沫定性一致的结果.
利用包含两种阻尼(Landau阻尼和碰撞阻尼)成分的受激拉曼散射(SRS)、受激布里渊散射线性分析程序LIP,在给定的等离子体状态下分析了阻尼成分、激光强度以及等离子体组分对点火尺度等离子体中受激散射不稳定性发展的影响.详细评估了碰撞阻尼的效应,发现碰撞阻尼在接近1/4临界密度处能有效抑制受激散射的增长,从而造成SRS光谱上的'缝'现象.同时,电子温度的升高会在特定的密度区域促进SRS的发展.研究结果可为点火实验的设计提供参考.
利用包含两种阻尼(Landau阻尼和碰撞阻尼)成分的受激拉曼散射(SRS)、受激布里渊散射线性分析程序LIP,在给定的等离子体状态下分析了阻尼成分、激光强度以及等离子体组分对点火尺度等离子体中受激散射不稳定性发展的影响.详细评估了碰撞阻尼的效应,发现碰撞阻尼在接近1/4临界密度处能有效抑制受激散射的增长,从而造成SRS光谱上的'缝'现象.同时,电子温度的升高会在特定的密度区域促进SRS的发展.研究结果可为点火实验的设计提供参考.
提出了一种基于时分复用技术的全光纤、全固化的用于惯性约束聚变驱动器的甚多路光脉冲产生系统.系统中采用单纵模振荡器输出连续激光信号,利用时分复用技术结合高速电光调制技术实现序列脉冲的产生和甚多束脉冲的独立整形.采用偏振无关的声光调制技术实现甚多束脉冲的独立输出.每个序列脉冲包含8个子脉冲,子脉冲间隔设置为120 ns,对子脉冲独立整形和选单后将其传输放大至微焦耳量级输出.实验成功验证了采用时分复用技术完全可以实现序列脉冲输出,各子脉冲可以独立任意整形且最后的单束输出能量为1.275 μJ.
提出了一种基于时分复用技术的全光纤、全固化的用于惯性约束聚变驱动器的甚多路光脉冲产生系统.系统中采用单纵模振荡器输出连续激光信号,利用时分复用技术结合高速电光调制技术实现序列脉冲的产生和甚多束脉冲的独立整形.采用偏振无关的声光调制技术实现甚多束脉冲的独立输出.每个序列脉冲包含8个子脉冲,子脉冲间隔设置为120 ns,对子脉冲独立整形和选单后将其传输放大至微焦耳量级输出.实验成功验证了采用时分复用技术完全可以实现序列脉冲输出,各子脉冲可以独立任意整形且最后的单束输出能量为1.275 μJ.
超短超强激光与等离子体相互作用产生的激光尾波场可以在毫米尺度上加速产生高能量的准单能电子束.在SILEX-Ⅰ激光装置上进行的激光尾波场加速实验中,利用超强飞秒激光与超声速锥形喷嘴产生的2.7 mm直径氦气气体柱相互作用,获得了能散为15.5%、发散角为15 mrad、能量为58 MeV的准单能电子束.在70 TW激光照射下获得的电子束总电量达到15.4 nC.介绍了实验条件、方法和主要实验结果.
超短超强激光与等离子体相互作用产生的激光尾波场可以在毫米尺度上加速产生高能量的准单能电子束.在SILEX-Ⅰ激光装置上进行的激光尾波场加速实验中,利用超强飞秒激光与超声速锥形喷嘴产生的2.7 mm直径氦气气体柱相互作用,获得了能散为15.5%、发散角为15 mrad、能量为58 MeV的准单能电子束.在70 TW激光照射下获得的电子束总电量达到15.4 nC.介绍了实验条件、方法和主要实验结果.
利用光谱测量和高速照相的方法,对大气压氮气介质阻挡放电进行了研究.在气流的帮助下,2 mm气隙中的均匀放电可以长时间得以维持.根据放电电流波形和1 μs曝光时间的放电图像,这种均匀放电被判定为汤森放电.用氦氖激光器对实验中所用的光谱仪带来的谱线轮廓展宽进行了标定,并将得到的仪器展宽数据输入Specair软件,计算了不同气体温度下氮分子二正系0—2谱带的谱线轮廓.通过用计算谱线轮廓去拟合实验谱线轮廓,确定了氮分子的转动温度并将其近似为气体温度.结果表明:大气压氮气介质阻挡汤森放电并不能使气体温度大幅上升(ΔTg≤50 K),气体温度的小幅上升不会引起热不稳定性而导致放电发展成为细丝放电.气流确实可以降低放电气体温度,但这不是使汤森放电得以维持的原因.通过比较加入气流前后的放电光谱可知,气流降低了气隙中杂质氧的含量,使得更多的氮分子亚稳态N2(A3Σ+u)的寿命延长到下一次放电的起始时刻,为汤森放电提供了必需的大量种子电子.
利用光谱测量和高速照相的方法,对大气压氮气介质阻挡放电进行了研究.在气流的帮助下,2 mm气隙中的均匀放电可以长时间得以维持.根据放电电流波形和1 μs曝光时间的放电图像,这种均匀放电被判定为汤森放电.用氦氖激光器对实验中所用的光谱仪带来的谱线轮廓展宽进行了标定,并将得到的仪器展宽数据输入Specair软件,计算了不同气体温度下氮分子二正系0—2谱带的谱线轮廓.通过用计算谱线轮廓去拟合实验谱线轮廓,确定了氮分子的转动温度并将其近似为气体温度.结果表明:大气压氮气介质阻挡汤森放电并不能使气体温度大幅上升(ΔTg≤50 K),气体温度的小幅上升不会引起热不稳定性而导致放电发展成为细丝放电.气流确实可以降低放电气体温度,但这不是使汤森放电得以维持的原因.通过比较加入气流前后的放电光谱可知,气流降低了气隙中杂质氧的含量,使得更多的氮分子亚稳态N2(A3Σ+u)的寿命延长到下一次放电的起始时刻,为汤森放电提供了必需的大量种子电子.
通过建立一个自洽耦合的一维流体模型来描述低气压氙气介质阻挡放电(DBD),并采用有限元法对模型进行数值仿真研究,得到了不同外加电压幅值和频率下的气体间隙压降、放电电流、介质表面电荷随时间的变化关系以及电子、离子、中性粒子和空间电场的时域分布.仿真结果表明:介质表面电荷对放电的点燃与熄灭起着关键的作用;在一个放电周期内,根据气体间隙压降的变化情况,介质表面电荷可按六个阶段进行分析;随着外施电压幅值的增加,间隙击穿逐渐提前至外施电压过零点之前发生,放电更为剧烈;随着外施电压频率的提高,气体间隙压降减小,间隙容易击穿,放电也更加均匀.粒子及空间电场的时域分布表明氙气DBD为典型的辉光放电.
通过建立一个自洽耦合的一维流体模型来描述低气压氙气介质阻挡放电(DBD),并采用有限元法对模型进行数值仿真研究,得到了不同外加电压幅值和频率下的气体间隙压降、放电电流、介质表面电荷随时间的变化关系以及电子、离子、中性粒子和空间电场的时域分布.仿真结果表明:介质表面电荷对放电的点燃与熄灭起着关键的作用;在一个放电周期内,根据气体间隙压降的变化情况,介质表面电荷可按六个阶段进行分析;随着外施电压幅值的增加,间隙击穿逐渐提前至外施电压过零点之前发生,放电更为剧烈;随着外施电压频率的提高,气体间隙压降减小,间隙容易击穿,放电也更加均匀.粒子及空间电场的时域分布表明氙气DBD为典型的辉光放电.
采用第一性原理方法计算了BeO在零温时的高压相变和三种结构在零温零压时的声子谱.相变的计算表明,在122 GPa左右的压力下BeO会发生从纤锌矿(B4)结构到氯化钠(B1)结构的相变,而闪锌矿(B3)结构在零温零压下是一种可能的亚稳态结构.采用冷声子方法计算了这三种结构的BeO在零温零压下的声子谱.计算结果表明:B1结构在零温零压下是一种不稳定的结构;尽管B4结构和B3结构具有明显的相似性,仍然可以通过声子谱来很好的区分.最后根据准简谐近似理论计算得到了BeO的高温高压相图.
采用第一性原理方法计算了BeO在零温时的高压相变和三种结构在零温零压时的声子谱.相变的计算表明,在122 GPa左右的压力下BeO会发生从纤锌矿(B4)结构到氯化钠(B1)结构的相变,而闪锌矿(B3)结构在零温零压下是一种可能的亚稳态结构.采用冷声子方法计算了这三种结构的BeO在零温零压下的声子谱.计算结果表明:B1结构在零温零压下是一种不稳定的结构;尽管B4结构和B3结构具有明显的相似性,仍然可以通过声子谱来很好的区分.最后根据准简谐近似理论计算得到了BeO的高温高压相图.
通过制作亲碳性铟锡氧化物(ITO)/Ti复合电极,改善移植型碳纳米管(CNT)冷阴极的导电电极与CNT膜层之间附着性能,从而消除CNT与电极间的界面势垒和非欧姆接触对CNT阴极场发射均匀性和稳定性的影响.采用磁控溅射技术和丝网印刷工艺制作了ITO/Ti基CNT阴极.用X射线衍射仪和场致发射扫描电子显微镜表征CNT阴极结构,结果显示热处理后的ITO/Ti基CNT阴极中可能有TiC相生成,从而使得导电电极与CNT形成有中间物的强作用体系.该体系降低甚至消除电极与CNT之间的界面势垒,增加了CNT与电极间形成欧姆接触的概率.用四探针技术分析电阻率,结果表明ITO/Ti复合电极具有电阻并联效果,CNT阴极导电性能提高.场致发射特性测试表明ITO/Ti基CNT阴极的场致发射电流达到384 μA/cm2,较普通ITO基CNT阴极的场致发射电流有显著提高,能够激发测试阳极发出均匀、稳定的高亮度荧光.制作ITO/Ti复合电极是实现场致发射稳定、均匀的低功耗CNT阴极的有效途径.
通过制作亲碳性铟锡氧化物(ITO)/Ti复合电极,改善移植型碳纳米管(CNT)冷阴极的导电电极与CNT膜层之间附着性能,从而消除CNT与电极间的界面势垒和非欧姆接触对CNT阴极场发射均匀性和稳定性的影响.采用磁控溅射技术和丝网印刷工艺制作了ITO/Ti基CNT阴极.用X射线衍射仪和场致发射扫描电子显微镜表征CNT阴极结构,结果显示热处理后的ITO/Ti基CNT阴极中可能有TiC相生成,从而使得导电电极与CNT形成有中间物的强作用体系.该体系降低甚至消除电极与CNT之间的界面势垒,增加了CNT与电极间形成欧姆接触的概率.用四探针技术分析电阻率,结果表明ITO/Ti复合电极具有电阻并联效果,CNT阴极导电性能提高.场致发射特性测试表明ITO/Ti基CNT阴极的场致发射电流达到384 μA/cm2,较普通ITO基CNT阴极的场致发射电流有显著提高,能够激发测试阳极发出均匀、稳定的高亮度荧光.制作ITO/Ti复合电极是实现场致发射稳定、均匀的低功耗CNT阴极的有效途径.
为了缩短铝诱导法制备大晶粒多晶硅薄膜的退火时间,用射频磁控溅射法在玻璃衬底上沉积了a-Si/SiO2/Al叠层膜,并用两种方法进行变温退火.分析了变温退火工艺对铝诱导晶化过程的影响,着重讨论了退火过程中温度由低温升到高温时不形成小晶粒的机理和条件.研究表明,当退火温度升高时,是否形成小晶粒取决于晶粒半径、耗尽层厚度和相邻晶粒间距三者之间的关系.
为了缩短铝诱导法制备大晶粒多晶硅薄膜的退火时间,用射频磁控溅射法在玻璃衬底上沉积了a-Si/SiO2/Al叠层膜,并用两种方法进行变温退火.分析了变温退火工艺对铝诱导晶化过程的影响,着重讨论了退火过程中温度由低温升到高温时不形成小晶粒的机理和条件.研究表明,当退火温度升高时,是否形成小晶粒取决于晶粒半径、耗尽层厚度和相邻晶粒间距三者之间的关系.
应用Chen-Mbius晶格反演获得的原子间相互作用势,对镍基超导母体材料EuNi2Si2不同空间群的结构进行结构弛豫、切变拉伸、随机扰动和X射线衍射谱的分析.研究表明,空间群号为139结构的EuNi2Si2母体材料能量最低,结构最稳定.另外,还计算了空间群号为139稳定晶格结构的声子态密度和热力学性质.计算结果表明:对于声子态密度,原子质量较大的稀土元素Eu在低频范围内贡献最大,随着频率的升高,原子质量较小的元素Si的贡献越来越突出;对于比热容和振动熵,在低温区元素Eu和Ni的贡献较大,随着温度的升高,元素Si的贡献越来越突出.
应用Chen-Mbius晶格反演获得的原子间相互作用势,对镍基超导母体材料EuNi2Si2不同空间群的结构进行结构弛豫、切变拉伸、随机扰动和X射线衍射谱的分析.研究表明,空间群号为139结构的EuNi2Si2母体材料能量最低,结构最稳定.另外,还计算了空间群号为139稳定晶格结构的声子态密度和热力学性质.计算结果表明:对于声子态密度,原子质量较大的稀土元素Eu在低频范围内贡献最大,随着频率的升高,原子质量较小的元素Si的贡献越来越突出;对于比热容和振动熵,在低温区元素Eu和Ni的贡献较大,随着温度的升高,元素Si的贡献越来越突出.
采用高频感应熔融、退火结合放电等离子烧结方法制备高锰硅(HMS)化合物MnSi1.70+x(x=0,0.05,0.1,0.15),系统研究了Si含量变化对材料相组成、微结构和热电性能的影响规律.结果表明,当x<0.1时,样品由HMS和贫Si的MnSi金属相两相组成,随着Si含量x的增加,MnSi相相对含量减小;当x=0.1时,所得样品为单相HMS化合物;当x>0.1时,样品由HMS和过量Si两相组成.随着x的增加,由于样品中高电导的金属相MnSi含量逐渐减少,样品的电导率逐渐下降,而Seebeck系数随之增加.室温下样品载流子浓度和有效质量随x增大逐渐减小,而迁移率逐渐增加.MnSi和Si杂相与HMS相比均为高热导相,因此当x=0.1时,由于样品为单相HMS,从而表现出最低热导率和最高ZT值.MnSi1.80样品在800 K时热导率最小值达到2.25 W ·m-1K-1,并在850 K处获得最大ZT值(0.45).
采用高频感应熔融、退火结合放电等离子烧结方法制备高锰硅(HMS)化合物MnSi1.70+x(x=0,0.05,0.1,0.15),系统研究了Si含量变化对材料相组成、微结构和热电性能的影响规律.结果表明,当x<0.1时,样品由HMS和贫Si的MnSi金属相两相组成,随着Si含量x的增加,MnSi相相对含量减小;当x=0.1时,所得样品为单相HMS化合物;当x>0.1时,样品由HMS和过量Si两相组成.随着x的增加,由于样品中高电导的金属相MnSi含量逐渐减少,样品的电导率逐渐下降,而Seebeck系数随之增加.室温下样品载流子浓度和有效质量随x增大逐渐减小,而迁移率逐渐增加.MnSi和Si杂相与HMS相比均为高热导相,因此当x=0.1时,由于样品为单相HMS,从而表现出最低热导率和最高ZT值.MnSi1.80样品在800 K时热导率最小值达到2.25 W ·m-1K-1,并在850 K处获得最大ZT值(0.45).
采用基于密度泛函理论的第一性原理计算,系统地研究了BiFeO3的7种不同空间群 (R3c, R3m, P4mm, Cm, Pm3 m, R3 m和R3 c)结构及其转变关系.结果表明,铁电相R3c结构是基态,不同结构之间也存在着一定的转变关系,其变化主要包括两种形式,在[111]方向上Bi3+相对FeO6八面体存在一定的位移和FeO6八面体绕[111]极化轴的反铁扭曲旋转.此外, 还得出BiFeO3的薄膜结构受到衬底结构的作用会导致其从三方相(R3c)向四方相(P4mm)转变.
采用基于密度泛函理论的第一性原理计算,系统地研究了BiFeO3的7种不同空间群 (R3c, R3m, P4mm, Cm, Pm3 m, R3 m和R3 c)结构及其转变关系.结果表明,铁电相R3c结构是基态,不同结构之间也存在着一定的转变关系,其变化主要包括两种形式,在[111]方向上Bi3+相对FeO6八面体存在一定的位移和FeO6八面体绕[111]极化轴的反铁扭曲旋转.此外, 还得出BiFeO3的薄膜结构受到衬底结构的作用会导致其从三方相(R3c)向四方相(P4mm)转变.
多孔硅由于具有较低的热导率,因而可以将其作为半导体器件中的绝热层.与其他从边界散射等复杂微观热传导机制出发建模研究多孔硅的热导率不同,将多孔硅热导率影响机制更表观地归结到孔洞的存在和分布等结构因素上,把整个多孔硅视为由硅连续材料介质和孔洞连续介质通过串联和并联组合成的复合微结构,给予其低热导率一个更为易于理解和简化的解释.进一步把孔隙率对等效热导率的影响分解为两个不同的部分,即纵向部分和横向部分,半定量地给出不同的孔洞结构和分布下孔隙率与等效热导率的关系.与实验数据进行对比后验证了模型的有效性.继而从结构的角度说明了多孔硅热导率较低的原因.
多孔硅由于具有较低的热导率,因而可以将其作为半导体器件中的绝热层.与其他从边界散射等复杂微观热传导机制出发建模研究多孔硅的热导率不同,将多孔硅热导率影响机制更表观地归结到孔洞的存在和分布等结构因素上,把整个多孔硅视为由硅连续材料介质和孔洞连续介质通过串联和并联组合成的复合微结构,给予其低热导率一个更为易于理解和简化的解释.进一步把孔隙率对等效热导率的影响分解为两个不同的部分,即纵向部分和横向部分,半定量地给出不同的孔洞结构和分布下孔隙率与等效热导率的关系.与实验数据进行对比后验证了模型的有效性.继而从结构的角度说明了多孔硅热导率较低的原因.
压缩是工程材料最基本的承载方式之一,多孔材料中的孔棱受到压缩载荷时可能产生屈曲行为.建立了各向同性三维网状高孔率多孔材料的简化结构失效模型,分析了这种材料在不同压缩载荷作用下由于孔棱发生屈曲而引起的失效模式,系统地得出了单向压缩、双向压缩和三向压缩等三种承载形式下这种多孔体受压而导致孔棱屈曲时名义主应力与孔率的数理关系.在此基础上,进一步得出了此类材料在压缩载荷作用下发生孔棱屈曲的载荷条件.
压缩是工程材料最基本的承载方式之一,多孔材料中的孔棱受到压缩载荷时可能产生屈曲行为.建立了各向同性三维网状高孔率多孔材料的简化结构失效模型,分析了这种材料在不同压缩载荷作用下由于孔棱发生屈曲而引起的失效模式,系统地得出了单向压缩、双向压缩和三向压缩等三种承载形式下这种多孔体受压而导致孔棱屈曲时名义主应力与孔率的数理关系.在此基础上,进一步得出了此类材料在压缩载荷作用下发生孔棱屈曲的载荷条件.
采用嵌入原子方法的原子间相互作用势,利用分子动力学方法模拟了六种贵金属原子(Ni, Pd, Pt, Cu, Ag, Au)分别在Pt (111)表面低能沉积的动力学过程.结果表明:随着入射能量从0.1 eV升高到200 eV,基体表面原子是按层迁移的,沉积过程对基体表面的影响和沉积原子在基体表层的作用均存在两个转变能量(ET1 ≈ 5 eV, ET2 ≈ 70 eV).当入射能量低于5 eV时,基体表面几乎没有吸附原子和空位形成,沉积原子在基体表层几乎没有注入产生;当入射能量在5—70 eV范围内时,沉积原子在基体表层有注入产生,其注入深度小于两个原子层,即为亚注入,此时吸附原子主要由基体表层原子形成,基体表面第三层以下没有空位形成;当入射能量高于70 eV时,沉积原子的注入深度大于两个原子层,将会导致表面以下第三层形成空位,并且空位产额随入射能量的升高而急剧增加.基于分子动力学模拟的结果,对低能沉积作用下的薄膜生长以及最优沉积参数的选择进行了讨论.
采用嵌入原子方法的原子间相互作用势,利用分子动力学方法模拟了六种贵金属原子(Ni, Pd, Pt, Cu, Ag, Au)分别在Pt (111)表面低能沉积的动力学过程.结果表明:随着入射能量从0.1 eV升高到200 eV,基体表面原子是按层迁移的,沉积过程对基体表面的影响和沉积原子在基体表层的作用均存在两个转变能量(ET1 ≈ 5 eV, ET2 ≈ 70 eV).当入射能量低于5 eV时,基体表面几乎没有吸附原子和空位形成,沉积原子在基体表层几乎没有注入产生;当入射能量在5—70 eV范围内时,沉积原子在基体表层有注入产生,其注入深度小于两个原子层,即为亚注入,此时吸附原子主要由基体表层原子形成,基体表面第三层以下没有空位形成;当入射能量高于70 eV时,沉积原子的注入深度大于两个原子层,将会导致表面以下第三层形成空位,并且空位产额随入射能量的升高而急剧增加.基于分子动力学模拟的结果,对低能沉积作用下的薄膜生长以及最优沉积参数的选择进行了讨论.
将Mg(C11H19O2)2(即双(2, 2, 6, 6,-四甲基-3, 5-庚二酮酸)镁)作为反应前驱体,用脉冲液滴注入式金属有机物化学气相沉积法,在较低温度(T=600 ℃)下合成MgO纳米线.纳米线沿着[001]方向生长且Au催化剂位于纳米线顶端,这表明纳米线是由气-液-固机制诱导生长的.通过改变前驱体注入的脉冲周期或周期注入剂量能够控制纳米线的生长模式,使之垂直或平行于样品表面生长.
将Mg(C11H19O2)2(即双(2, 2, 6, 6,-四甲基-3, 5-庚二酮酸)镁)作为反应前驱体,用脉冲液滴注入式金属有机物化学气相沉积法,在较低温度(T=600 ℃)下合成MgO纳米线.纳米线沿着[001]方向生长且Au催化剂位于纳米线顶端,这表明纳米线是由气-液-固机制诱导生长的.通过改变前驱体注入的脉冲周期或周期注入剂量能够控制纳米线的生长模式,使之垂直或平行于样品表面生长.
采用第一性原理方法研究了二维六角氮化硼(2D h-BN)在单轴大应变下的结构变化.计算过程中以原胞在垂直和平行于B—N键方向的长度Lx和Ly来描述2D h-BN所受到的应变.结果表明:在垂直于B—N键的方向施加大应变,当Lx≤0.3388 nm时,体系处于简单斜方结构;随着应变的增大,体系逐渐从简单斜方结构向简单长方结构转变,当Lx≥0.3488 nm时,体系处于简单长方结构,该结构是由交错并排的BN链相互作用形成;随着应变继续增大,简单长方结构中链之间的作用逐渐减小,当Lx>0.6 nm最终趋向于孤立的BN链.在平行于B—N键的方向施加大应变,体系从最初的简单斜方结构直接转变成交错并排的BN链结构,没有出现长方结构,当Ly>0.571 nm时,体系最终也趋向于孤立的BN链结构.
采用第一性原理方法研究了二维六角氮化硼(2D h-BN)在单轴大应变下的结构变化.计算过程中以原胞在垂直和平行于B—N键方向的长度Lx和Ly来描述2D h-BN所受到的应变.结果表明:在垂直于B—N键的方向施加大应变,当Lx≤0.3388 nm时,体系处于简单斜方结构;随着应变的增大,体系逐渐从简单斜方结构向简单长方结构转变,当Lx≥0.3488 nm时,体系处于简单长方结构,该结构是由交错并排的BN链相互作用形成;随着应变继续增大,简单长方结构中链之间的作用逐渐减小,当Lx>0.6 nm最终趋向于孤立的BN链.在平行于B—N键的方向施加大应变,体系从最初的简单斜方结构直接转变成交错并排的BN链结构,没有出现长方结构,当Ly>0.571 nm时,体系最终也趋向于孤立的BN链结构.
基于密度泛函理论第一性原理方法计算了Al和N共掺对Zn1-xMgxO在紫外光波段和可见光波段光学性质的影响.计算结果表明:光学性质变化主要发生在低能区,在高能区光学性质基本保持不变.介电函数虚部、吸收光谱和消光系数计算表明,Al和N共掺后Zn1-xMgxO的光学吸收边产生红移,对部分紫外光和可见光的吸收增强.介电函数实部和反射光谱计算表明,Al和N共掺后Zn1-xMgxO的反射峰强度增大,静态介电常数ε1(0)从2.64增大为3.23.能量损失谱的计算表明, Al和N共掺后Zn1-xMgxO的等离子体共振频率发生蓝移,共振频率的振幅增大.
基于密度泛函理论第一性原理方法计算了Al和N共掺对Zn1-xMgxO在紫外光波段和可见光波段光学性质的影响.计算结果表明:光学性质变化主要发生在低能区,在高能区光学性质基本保持不变.介电函数虚部、吸收光谱和消光系数计算表明,Al和N共掺后Zn1-xMgxO的光学吸收边产生红移,对部分紫外光和可见光的吸收增强.介电函数实部和反射光谱计算表明,Al和N共掺后Zn1-xMgxO的反射峰强度增大,静态介电常数ε1(0)从2.64增大为3.23.能量损失谱的计算表明, Al和N共掺后Zn1-xMgxO的等离子体共振频率发生蓝移,共振频率的振幅增大.
使用分子动力学方法,模拟研究了单晶Cu(001)薄膜在双向等轴拉伸应变下的塑性变形行为.当应变超过一定值时,样品通过产生位错、层错及孪晶而发生塑性变形.当应变相对较低时,不全位错首先在薄膜表面形核并在密排面上滑移,留下堆积层错;当应变增加时,位错在表面与内部同时成核生长,层错数量也随之增加.分析了相邻滑移面上的位错之间相互作用形成孪晶的微观过程.材料内部形成大量堆积层错及孪晶后,较大孪晶的密排面上的原子也会发生滑移,形成孪晶内部的层错结构以释放残余应力.
使用分子动力学方法,模拟研究了单晶Cu(001)薄膜在双向等轴拉伸应变下的塑性变形行为.当应变超过一定值时,样品通过产生位错、层错及孪晶而发生塑性变形.当应变相对较低时,不全位错首先在薄膜表面形核并在密排面上滑移,留下堆积层错;当应变增加时,位错在表面与内部同时成核生长,层错数量也随之增加.分析了相邻滑移面上的位错之间相互作用形成孪晶的微观过程.材料内部形成大量堆积层错及孪晶后,较大孪晶的密排面上的原子也会发生滑移,形成孪晶内部的层错结构以释放残余应力.
讨论了在杂质电荷的电场影响下,量子环上荷负电激子X-的能-光谱及其Aharonov-Bohm振荡.当轨道总角动量不守恒的情况下,提出如何按轨道角动量分类构成基矢组并用典型的对角化方法求解体系的本征值和本征矢的方案.该方案计算简单,计算结果令人满意.还讨论了运用等效电荷变换公式和变换图,把位于三维空间的杂质简化为二维平面(或x轴上)的杂质处理,使计算变得更简单,对结果的分析也更明晰.
讨论了在杂质电荷的电场影响下,量子环上荷负电激子X-的能-光谱及其Aharonov-Bohm振荡.当轨道总角动量不守恒的情况下,提出如何按轨道角动量分类构成基矢组并用典型的对角化方法求解体系的本征值和本征矢的方案.该方案计算简单,计算结果令人满意.还讨论了运用等效电荷变换公式和变换图,把位于三维空间的杂质简化为二维平面(或x轴上)的杂质处理,使计算变得更简单,对结果的分析也更明晰.
基于极化子和双极化子的物理图像,采用无拟合参数的巨正则统计方法计算了Si掺杂的AlxGa1-xAs的导带载流子浓度,计算得到的理论结果从高温到低温都与实验结果定量一致.计算证实了AlxGa1-xAs:Si中的DX中心的基态DX-是电子-晶格相互作用产生的负电双极化子. 处于热平衡状态时,施主Si在AlxGa1-xAs中除了电离状态,处于不同晶格构型的单、双极化子态共存,低温时双极化子态被冻结;光照下发生持续光电导时,双极化子态变成单极化子态同时向导带释放一个电子,此过程伴随着进一步的晶格弛豫.理论与实验的对照说明单电子局域的DX0态在热平衡时并不能稳定存在,这和提出的双极化子机制是完全一致的.
基于极化子和双极化子的物理图像,采用无拟合参数的巨正则统计方法计算了Si掺杂的AlxGa1-xAs的导带载流子浓度,计算得到的理论结果从高温到低温都与实验结果定量一致.计算证实了AlxGa1-xAs:Si中的DX中心的基态DX-是电子-晶格相互作用产生的负电双极化子. 处于热平衡状态时,施主Si在AlxGa1-xAs中除了电离状态,处于不同晶格构型的单、双极化子态共存,低温时双极化子态被冻结;光照下发生持续光电导时,双极化子态变成单极化子态同时向导带释放一个电子,此过程伴随着进一步的晶格弛豫.理论与实验的对照说明单电子局域的DX0态在热平衡时并不能稳定存在,这和提出的双极化子机制是完全一致的.
理论研究了铁磁/有机半导体肖特基接触时的电流自旋极化注入,并讨论了电流自旋极化率随界面处肖特基势垒高度、有机半导体层中特殊载流子及其迁移率、界面附近掺杂浓度的变化关系.通过计算发现,寻找在势垒区中载流子迁移率比较大的有机半导体材料对实现有效的自旋注入是必要的;同时还发现,由于铁磁/有机半导体接触而形成的肖特基势垒不利于自旋注入.因此要想实现有效的自旋注入,界面附近必须采用重掺杂来有效减少势垒区的宽度,且势垒的高度要限制在一定的范围内.
理论研究了铁磁/有机半导体肖特基接触时的电流自旋极化注入,并讨论了电流自旋极化率随界面处肖特基势垒高度、有机半导体层中特殊载流子及其迁移率、界面附近掺杂浓度的变化关系.通过计算发现,寻找在势垒区中载流子迁移率比较大的有机半导体材料对实现有效的自旋注入是必要的;同时还发现,由于铁磁/有机半导体接触而形成的肖特基势垒不利于自旋注入.因此要想实现有效的自旋注入,界面附近必须采用重掺杂来有效减少势垒区的宽度,且势垒的高度要限制在一定的范围内.
基于电子在分裂能级系统中同时存在的共振隧穿和子带输运过程,结合光生载流子作用提出了纳米硅结构中的光电输运理论模型.利用该模型计算了纳米硅结构在光照条件下的电流密度、电场强度及电子浓度分布.结果表明,光生电子在具有分裂能级的纳米硅中是以共振隧穿为主要输运方式.在此基础上,详细研究了光电流与吸收系数、外加偏压以及纳米硅层层数之间的关系,发现在特定的外界条件下光电流会出现跳变增加的现象,其物理原因是纳米硅结构中电场强度的二次分布.
基于电子在分裂能级系统中同时存在的共振隧穿和子带输运过程,结合光生载流子作用提出了纳米硅结构中的光电输运理论模型.利用该模型计算了纳米硅结构在光照条件下的电流密度、电场强度及电子浓度分布.结果表明,光生电子在具有分裂能级的纳米硅中是以共振隧穿为主要输运方式.在此基础上,详细研究了光电流与吸收系数、外加偏压以及纳米硅层层数之间的关系,发现在特定的外界条件下光电流会出现跳变增加的现象,其物理原因是纳米硅结构中电场强度的二次分布.
在异质结前界面缺陷态密度Dit1和异质结背界面缺陷态密度Dit2均取不同值时,对p型单晶硅(c-Si(p))为衬底的硅异质结太阳电池的衬底电阻率ρ与电池性能的关系进行了数值研究.结果表明:衬底电阻率的最优值ρop取决于前界面缺陷态密度Dit1,且ρop随着Dit1的增大而增大;当ρ>ρop时, 背界面缺陷态密度Dit2对衬底电阻率的可取值范围具有较大影响,Dit2越大衬底电阻率的可取值范围越小.
在异质结前界面缺陷态密度Dit1和异质结背界面缺陷态密度Dit2均取不同值时,对p型单晶硅(c-Si(p))为衬底的硅异质结太阳电池的衬底电阻率ρ与电池性能的关系进行了数值研究.结果表明:衬底电阻率的最优值ρop取决于前界面缺陷态密度Dit1,且ρop随着Dit1的增大而增大;当ρ>ρop时, 背界面缺陷态密度Dit2对衬底电阻率的可取值范围具有较大影响,Dit2越大衬底电阻率的可取值范围越小.
分析研究了应变绝缘层上硅锗p型金属氧化物场效应晶体管(SGOI pMOSFET)的阈值电压模型,修正了应变作用下SGOI pMOSFET的能带模型,并提取了主要的物理参量.这些典型的参量包括禁带宽度、电子亲和能、内建势等.给出了应变硅SGOI pMOSFET内部电势分布的二维泊松方程,通过边界条件求解方程,得出了准确的阈值电压模型,并且验证了该模型的正确性.
分析研究了应变绝缘层上硅锗p型金属氧化物场效应晶体管(SGOI pMOSFET)的阈值电压模型,修正了应变作用下SGOI pMOSFET的能带模型,并提取了主要的物理参量.这些典型的参量包括禁带宽度、电子亲和能、内建势等.给出了应变硅SGOI pMOSFET内部电势分布的二维泊松方程,通过边界条件求解方程,得出了准确的阈值电压模型,并且验证了该模型的正确性.
用固相反应法制备了La0.45Ca0.55Mn1-xVxO3(x=0.00,0.10)多晶样品. 通过X射线衍射谱、质量磁化强度-温度曲线、电子自旋共振谱,研究了V5+替代Mn3+/Mn4+对La0.45Ca0.55MnO3电荷有序相和自旋玻璃态的影响. 实验结果表明,当x=0.10时,不仅母体的电荷有序相基本破坏,而且母体在40 K左右出现的自旋玻璃态也被融化. 电荷有序相被破坏的主要原因是用V5+替代Mn3+/Mn4+后,增加了Mn3+与Mn4+的比例,使铁磁双交换作用优于反铁磁超交换作用;自旋玻璃态的融化是由于V替代Mn后破坏了反铁磁背景下有少量铁磁成分的自旋玻璃态的形成条件.
用固相反应法制备了La0.45Ca0.55Mn1-xVxO3(x=0.00,0.10)多晶样品. 通过X射线衍射谱、质量磁化强度-温度曲线、电子自旋共振谱,研究了V5+替代Mn3+/Mn4+对La0.45Ca0.55MnO3电荷有序相和自旋玻璃态的影响. 实验结果表明,当x=0.10时,不仅母体的电荷有序相基本破坏,而且母体在40 K左右出现的自旋玻璃态也被融化. 电荷有序相被破坏的主要原因是用V5+替代Mn3+/Mn4+后,增加了Mn3+与Mn4+的比例,使铁磁双交换作用优于反铁磁超交换作用;自旋玻璃态的融化是由于V替代Mn后破坏了反铁磁背景下有少量铁磁成分的自旋玻璃态的形成条件.
在正弦电场E=E0sin(2πft)加载下,通过改变电场E0(5—55 kV/cm)和频率f(0.1—100 Hz),测量了37BiScO3-63PbTiO3铁电陶瓷材料的电滞回线.数据拟合结果表明:在低电场和高电场阶段,剩余极化强度Pr的对数和矫顽场强Ec的对数都与电场强度E0的对数存在线性关系,而介于高电场与低电场之间则无线性关系存在,这种三阶段行为有别于现有的两阶段行为.这可归结于铁电陶瓷在不同的电场作用下铁电极化机理的不同.
在正弦电场E=E0sin(2πft)加载下,通过改变电场E0(5—55 kV/cm)和频率f(0.1—100 Hz),测量了37BiScO3-63PbTiO3铁电陶瓷材料的电滞回线.数据拟合结果表明:在低电场和高电场阶段,剩余极化强度Pr的对数和矫顽场强Ec的对数都与电场强度E0的对数存在线性关系,而介于高电场与低电场之间则无线性关系存在,这种三阶段行为有别于现有的两阶段行为.这可归结于铁电陶瓷在不同的电场作用下铁电极化机理的不同.
制备了四种不同孔隙率的Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3铁电陶瓷,并研究了冲击波作用下孔隙率对陶瓷去极化性能的影响. 研究表明: 短路负载条件下陶瓷的放电波形不随孔隙的加入而改变,均为方波. 多孔陶瓷的放电脉冲幅度较低,脉冲宽度较长. 释放的电荷量随着孔隙率的增加而减小,与静态电滞回线测试结果一致. 多孔陶瓷具有较低的冲击阻抗,改善了与封装介质的阻抗匹配. 用Lysne模型拟合了材料在高电阻负载条件下的放电行为,并指出高电阻负载条件下材料的介电常数是静态介电常数的4—5倍,而且材料的介电常数随孔隙率的增加而减小. 冲击波通过样品以后,电路的放电时间常数随着孔隙率的增大而增大. 随着电阻的增大,样品负载电压增高,材料铁电-反铁电相变受到抑制,电流上升沿变缓,致密陶瓷出现了击穿现象.
制备了四种不同孔隙率的Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3铁电陶瓷,并研究了冲击波作用下孔隙率对陶瓷去极化性能的影响. 研究表明: 短路负载条件下陶瓷的放电波形不随孔隙的加入而改变,均为方波. 多孔陶瓷的放电脉冲幅度较低,脉冲宽度较长. 释放的电荷量随着孔隙率的增加而减小,与静态电滞回线测试结果一致. 多孔陶瓷具有较低的冲击阻抗,改善了与封装介质的阻抗匹配. 用Lysne模型拟合了材料在高电阻负载条件下的放电行为,并指出高电阻负载条件下材料的介电常数是静态介电常数的4—5倍,而且材料的介电常数随孔隙率的增加而减小. 冲击波通过样品以后,电路的放电时间常数随着孔隙率的增大而增大. 随着电阻的增大,样品负载电压增高,材料铁电-反铁电相变受到抑制,电流上升沿变缓,致密陶瓷出现了击穿现象.
研究了AlGaN层参数对GaN基n+-GaN/i-AlxGa1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响规律及物理机制. 模拟计算发现: 降低AlGaN层本底载流子浓度会增加器件的量子效率,当本底载流子浓度不能进一步降低时,可以通过减小AlGaN层的厚度以保证器件的量子效率. 在材料生长和器件工艺过程中都应减少界面态. 外加较小的反向偏压能大幅度提高紫外量子效率,分析表明,GaN/AlGaN/GaN形成的两个背靠背、方向相反的异质结电场是出现这些现象的根本原因. 在实际器件设计中,应该根据需要调节各结构参数,以保证器件的量子效率.
研究了AlGaN层参数对GaN基n+-GaN/i-AlxGa1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响规律及物理机制. 模拟计算发现: 降低AlGaN层本底载流子浓度会增加器件的量子效率,当本底载流子浓度不能进一步降低时,可以通过减小AlGaN层的厚度以保证器件的量子效率. 在材料生长和器件工艺过程中都应减少界面态. 外加较小的反向偏压能大幅度提高紫外量子效率,分析表明,GaN/AlGaN/GaN形成的两个背靠背、方向相反的异质结电场是出现这些现象的根本原因. 在实际器件设计中,应该根据需要调节各结构参数,以保证器件的量子效率.
研究了高温高压下制备MgxZn1-xO(0.30xxZn1-xO(x=0.4,0.5,0.6)固溶体,解决了常压下MgxZn1-xO的分相问题. 通过X射线衍射仪和扫描电子显微镜等测试手段,对MgxZn1-xO样品进行了表征,阐明了立方相MgxZn1-xO的形成机制,给出了高压下MgxZn1-xO固溶体的温度与组分相图.
研究了高温高压下制备MgxZn1-xO(0.30xxZn1-xO(x=0.4,0.5,0.6)固溶体,解决了常压下MgxZn1-xO的分相问题. 通过X射线衍射仪和扫描电子显微镜等测试手段,对MgxZn1-xO样品进行了表征,阐明了立方相MgxZn1-xO的形成机制,给出了高压下MgxZn1-xO固溶体的温度与组分相图.
使用正电子湮没寿命谱和正电子寿命-动量关联谱对水蒸气和真空条件下退火的多孔硅样品的微观缺陷结构进行表征,结合发射光谱测量结果,对影响多孔硅发光性能的因素进行了讨论.实验结果表明,水蒸气退火后样品孔壁表面的悬挂键减少,并出现新的E'γ和EX类缺陷.水蒸气退火后样品中两种缺陷数量发生变化是导致多孔硅样品发光增强的直接原因;真空退火未使样品中发光相关缺陷发生变化,样品的发光性能没有显著改变.
使用正电子湮没寿命谱和正电子寿命-动量关联谱对水蒸气和真空条件下退火的多孔硅样品的微观缺陷结构进行表征,结合发射光谱测量结果,对影响多孔硅发光性能的因素进行了讨论.实验结果表明,水蒸气退火后样品孔壁表面的悬挂键减少,并出现新的E'γ和EX类缺陷.水蒸气退火后样品中两种缺陷数量发生变化是导致多孔硅样品发光增强的直接原因;真空退火未使样品中发光相关缺陷发生变化,样品的发光性能没有显著改变.
以高纯石墨做靶,CHF3和Ar气为源气体,采用射频反应磁控溅射法在不同流量比条件下制备了氟化类金刚石(F-DLC)薄膜.利用原子力显微镜、纳米压痕仪、拉曼光谱和红外光谱、摩擦磨损测试仪对薄膜的表面形貌、硬度、键结构以及摩擦性能做了具体分析.表面形貌测试结果表明,制备的薄膜整体均匀致密,表现出了良好的减摩性能.当CHF3与Ar气流量比r为1 ∶6时,所得薄膜的摩擦系数减小至0.42,而纳米压痕结果显示,此时薄膜的硬度也最高.拉曼和红外光谱显示,随着r的增加,薄膜中的F浓度呈上升趋势,薄膜中的芳香环比例减小.研究表明,F原子的键入方式是影响F-DLC薄膜摩擦系数的一个重要因素,CF2反对称伸缩振动强度的减弱和C C中适量碳氢氟键的形成都能导致薄膜具有相对较低的摩擦系数.
以高纯石墨做靶,CHF3和Ar气为源气体,采用射频反应磁控溅射法在不同流量比条件下制备了氟化类金刚石(F-DLC)薄膜.利用原子力显微镜、纳米压痕仪、拉曼光谱和红外光谱、摩擦磨损测试仪对薄膜的表面形貌、硬度、键结构以及摩擦性能做了具体分析.表面形貌测试结果表明,制备的薄膜整体均匀致密,表现出了良好的减摩性能.当CHF3与Ar气流量比r为1 ∶6时,所得薄膜的摩擦系数减小至0.42,而纳米压痕结果显示,此时薄膜的硬度也最高.拉曼和红外光谱显示,随着r的增加,薄膜中的F浓度呈上升趋势,薄膜中的芳香环比例减小.研究表明,F原子的键入方式是影响F-DLC薄膜摩擦系数的一个重要因素,CF2反对称伸缩振动强度的减弱和C C中适量碳氢氟键的形成都能导致薄膜具有相对较低的摩擦系数.
采用熔体旋甩结合放电等离子烧结(MS-SPS)技术制备了单相n型四元(Bi0.85Sb0.15)2(Te1-xSex)3(x=0.15,0.17,0.19,0.21)化合物,并对所得样品的微结构和热电传输性能进行了系统研究.样品自由断裂面的场发射扫描电子显微镜及抛光面的背散射电子成分分析表明:块体材料晶粒细小,晶粒排列紧密,成分分布均匀且相结构单一,样品中存在大量10—100 nm的层状结构.随着Se含量x的增加,样品的电导率和热导率逐渐增加,而Seebeck系数逐渐降低.相比商业应用的区熔材料,MS-SPS方法合成的高Se组成的样品均在425 K后表现出更高的ZT值,其中 (Bi0.85Sb0.15)2(Te0.83Se0.17)3样品具有最高的ZT值,在360 K可达到0.96,并在320—500 K均保持较高的ZT值,500 K时其ZT值相比区熔材料提高了48%.此外,通过调节Se的含量,可以有效地调控材料的ZT峰值出现的温度段,这对多级或梯度热电器件的制备具有重要意义.
采用熔体旋甩结合放电等离子烧结(MS-SPS)技术制备了单相n型四元(Bi0.85Sb0.15)2(Te1-xSex)3(x=0.15,0.17,0.19,0.21)化合物,并对所得样品的微结构和热电传输性能进行了系统研究.样品自由断裂面的场发射扫描电子显微镜及抛光面的背散射电子成分分析表明:块体材料晶粒细小,晶粒排列紧密,成分分布均匀且相结构单一,样品中存在大量10—100 nm的层状结构.随着Se含量x的增加,样品的电导率和热导率逐渐增加,而Seebeck系数逐渐降低.相比商业应用的区熔材料,MS-SPS方法合成的高Se组成的样品均在425 K后表现出更高的ZT值,其中 (Bi0.85Sb0.15)2(Te0.83Se0.17)3样品具有最高的ZT值,在360 K可达到0.96,并在320—500 K均保持较高的ZT值,500 K时其ZT值相比区熔材料提高了48%.此外,通过调节Se的含量,可以有效地调控材料的ZT峰值出现的温度段,这对多级或梯度热电器件的制备具有重要意义.
利用聚偏二氟乙烯压电传感器研究了爆炸加载下冲击波在二氧化硅气凝胶中的传播特性,并对冲击波在二氧化硅气凝胶和泡沫铝中的传播特性进行了比较. 结果表明: 在二氧化硅气凝胶中冲击波的强度随传播距离的增加呈现指数衰减的趋势. 冲击波在二氧化硅气凝胶中衰减比在泡沫铝中衰减明显. 由于二氧化硅气凝胶内部特殊的纳米多孔网状结构,导致冲击波在二氧化硅气凝胶中的衰减效果较好. 冲击波在二氧化硅气凝胶中的传播速度极低,因此冲击波在二氧化硅气凝胶中传播时卸载波的追赶卸载效应非常明显,这又进一步促进了冲击波的衰减.
利用聚偏二氟乙烯压电传感器研究了爆炸加载下冲击波在二氧化硅气凝胶中的传播特性,并对冲击波在二氧化硅气凝胶和泡沫铝中的传播特性进行了比较. 结果表明: 在二氧化硅气凝胶中冲击波的强度随传播距离的增加呈现指数衰减的趋势. 冲击波在二氧化硅气凝胶中衰减比在泡沫铝中衰减明显. 由于二氧化硅气凝胶内部特殊的纳米多孔网状结构,导致冲击波在二氧化硅气凝胶中的衰减效果较好. 冲击波在二氧化硅气凝胶中的传播速度极低,因此冲击波在二氧化硅气凝胶中传播时卸载波的追赶卸载效应非常明显,这又进一步促进了冲击波的衰减.
第四代地磁场综合模型CM4是迄今为止将地磁场的内源场和外源场分离得最为彻底的数学模型. 利用该模型结合Taylor多项式模型,基于1960—2000年期间中国大陆地区的实测数据,计算并分析了以10 a为间隔的内源场和外源场的变化情况,通过将1960—1990年的所有磁异常点归算至2000年以分析地壳磁异常场的总体分布趋势. 结果显示:地磁北向分量X的内源场强度总体呈逐年减弱的趋势,从1960年到2000年共下降了约750 nT,外源场强度总体呈先增强后减弱的趋势,共下降了约32 nT;地磁东向分量Y的内源场强度总体呈先减弱后增强的趋势,1960—2000年期间共上升了约40 nT,外源场强度总体呈先减弱后增强再减弱的趋势,共上升了约3.8 nT;地磁垂直分量Z的内源场变化趋势与Y分量类似,共上升了约600 nT,外源场总体呈先减弱后增强的趋势,共上升了约4.6 nT. 对于地壳磁异常场,X分量、Z分量、地磁总强度F和地磁水平分量H在中国大陆地区都为负异常分布,X分量和H分量的负异常强度随经度增加而减弱,Z分量和F分量则相反;Y分量和磁偏角D的分布较为类似,在中国的中西部大部分地区为正异常,强度随经度增加而减弱,磁倾角I主要以负异常为主,负异常强度随经度增加而增强.
第四代地磁场综合模型CM4是迄今为止将地磁场的内源场和外源场分离得最为彻底的数学模型. 利用该模型结合Taylor多项式模型,基于1960—2000年期间中国大陆地区的实测数据,计算并分析了以10 a为间隔的内源场和外源场的变化情况,通过将1960—1990年的所有磁异常点归算至2000年以分析地壳磁异常场的总体分布趋势. 结果显示:地磁北向分量X的内源场强度总体呈逐年减弱的趋势,从1960年到2000年共下降了约750 nT,外源场强度总体呈先增强后减弱的趋势,共下降了约32 nT;地磁东向分量Y的内源场强度总体呈先减弱后增强的趋势,1960—2000年期间共上升了约40 nT,外源场强度总体呈先减弱后增强再减弱的趋势,共上升了约3.8 nT;地磁垂直分量Z的内源场变化趋势与Y分量类似,共上升了约600 nT,外源场总体呈先减弱后增强的趋势,共上升了约4.6 nT. 对于地壳磁异常场,X分量、Z分量、地磁总强度F和地磁水平分量H在中国大陆地区都为负异常分布,X分量和H分量的负异常强度随经度增加而减弱,Z分量和F分量则相反;Y分量和磁偏角D的分布较为类似,在中国的中西部大部分地区为正异常,强度随经度增加而减弱,磁倾角I主要以负异常为主,负异常强度随经度增加而增强.
基于风沙两相流的相互作用和气块质量变化的观点,推导出了闭合的沙尘大气物理约束方程组.理想状况下对之分析发现: 沙尘大气密度比同体积洁净大气大,一定程度上会减缓气块的运动速度;沙尘与空气间的速度差异会使得细粒子处于高流速区,而粗粒子位于低流速区;温度差异会使得沙尘在上升运动中充当热源,下沉运动中充当冷源,从而加强对流;沙尘大气质量定容热容会在等压面上诱发新的温度梯度,促进沙尘云边界处的夹卷;沙尘大气气体常数会在等温面上诱发新的气压梯度,促进沙尘云边界处的夹卷;质量变化会对气块密度、速度和温度造成较大影响.总之,沙尘云要比基于被动标量的方程组模拟结果更高大、内部对流更强、边界处夹卷更活跃、水平运动更迟缓.
基于风沙两相流的相互作用和气块质量变化的观点,推导出了闭合的沙尘大气物理约束方程组.理想状况下对之分析发现: 沙尘大气密度比同体积洁净大气大,一定程度上会减缓气块的运动速度;沙尘与空气间的速度差异会使得细粒子处于高流速区,而粗粒子位于低流速区;温度差异会使得沙尘在上升运动中充当热源,下沉运动中充当冷源,从而加强对流;沙尘大气质量定容热容会在等压面上诱发新的温度梯度,促进沙尘云边界处的夹卷;沙尘大气气体常数会在等温面上诱发新的气压梯度,促进沙尘云边界处的夹卷;质量变化会对气块密度、速度和温度造成较大影响.总之,沙尘云要比基于被动标量的方程组模拟结果更高大、内部对流更强、边界处夹卷更活跃、水平运动更迟缓.
利用变分结合正则化方法,对高度计风速资料在无辐散和有辐散两种情形下的背景风场进行调整,同时进行了数值试验.试验表明:高度计风速对背景风场的调整有积极作用,特别是高度计沿轨区域风场调整效果更为明显.对高度计后向散射截面进行了敏感性试验,当后向散射截面存在随机扰动时,利用高度计风速调整海面风场具有较强的抗噪性.最后进行实例试验,结果表明该方法是切实可行的.
利用变分结合正则化方法,对高度计风速资料在无辐散和有辐散两种情形下的背景风场进行调整,同时进行了数值试验.试验表明:高度计风速对背景风场的调整有积极作用,特别是高度计沿轨区域风场调整效果更为明显.对高度计后向散射截面进行了敏感性试验,当后向散射截面存在随机扰动时,利用高度计风速调整海面风场具有较强的抗噪性.最后进行实例试验,结果表明该方法是切实可行的.
为研究地闪雷电电磁脉冲(LEMP)在大地中的分布规律,采用二维时域有限差分法计算了在雷电通道不同距离处、不同大地电参数条件下LEMP在地下不同深度的分布,并与其他高功率电磁环境在大地中的衰减情况作了对比.计算结果表明: 随距离增大, 大地中LEMP场分量迅速衰减;大地电导率较大时,电场分量衰减很大;大地电容率的变化主要影响LEMP的垂直电场分量,随大地电容率的增大,垂直电场分量明显减小;随深度的增大,电场分量衰减增大,其高频成分的衰减尤为显著,低频成分则衰减很小. 由此可知,对电线电缆实施简单的埋地处理并不能有效防止LEMP的耦合效应.
为研究地闪雷电电磁脉冲(LEMP)在大地中的分布规律,采用二维时域有限差分法计算了在雷电通道不同距离处、不同大地电参数条件下LEMP在地下不同深度的分布,并与其他高功率电磁环境在大地中的衰减情况作了对比.计算结果表明: 随距离增大, 大地中LEMP场分量迅速衰减;大地电导率较大时,电场分量衰减很大;大地电容率的变化主要影响LEMP的垂直电场分量,随大地电容率的增大,垂直电场分量明显减小;随深度的增大,电场分量衰减增大,其高频成分的衰减尤为显著,低频成分则衰减很小. 由此可知,对电线电缆实施简单的埋地处理并不能有效防止LEMP的耦合效应.
针对去趋势波动分析方法中参数不重叠等长度子区间长度s的选取,基于信息论的基本原理,提出使用符号分析方法对原始数据进行符号编码,并使用不同的方式对符号序列进行分段、计算互信息函数. 细致描述了不同分段方式对原始混沌序列的信息编码能力,以此判断所采用的分段方式能否真实有效地还原原始序列所包含的全部信息. 给出了确定最优分段个数或各分段长度的具体方式,确定了不重叠等长度子区间长度s的选取算法,以及判断所研究序列是否适用于去趋势波动分析方法,避免了以往参数s选取中随机性和主观性给计算结果带来的错误信息. 进一步将该方法应用于实际温度资料,计算并分析中国1961—2000年逐日平均温度的去趋势波动分析指数分布状况.
针对去趋势波动分析方法中参数不重叠等长度子区间长度s的选取,基于信息论的基本原理,提出使用符号分析方法对原始数据进行符号编码,并使用不同的方式对符号序列进行分段、计算互信息函数. 细致描述了不同分段方式对原始混沌序列的信息编码能力,以此判断所采用的分段方式能否真实有效地还原原始序列所包含的全部信息. 给出了确定最优分段个数或各分段长度的具体方式,确定了不重叠等长度子区间长度s的选取算法,以及判断所研究序列是否适用于去趋势波动分析方法,避免了以往参数s选取中随机性和主观性给计算结果带来的错误信息. 进一步将该方法应用于实际温度资料,计算并分析中国1961—2000年逐日平均温度的去趋势波动分析指数分布状况.
在考虑黑洞视界与宇宙视界具有关联性的基础上,证明de Sitter时空的热力学熵为黑洞视界热力学熵与宇宙视界热力学熵之和.给出了考虑两视界具有关联性后的de Sitter时空的热力学特性.研究表明,de Sitter时空的能量上限为纯de Sitter时空能量,de Sitter时空的热容量是负的, de Sitter时空一般是量子力学不稳定的.
在考虑黑洞视界与宇宙视界具有关联性的基础上,证明de Sitter时空的热力学熵为黑洞视界热力学熵与宇宙视界热力学熵之和.给出了考虑两视界具有关联性后的de Sitter时空的热力学特性.研究表明,de Sitter时空的能量上限为纯de Sitter时空能量,de Sitter时空的热容量是负的, de Sitter时空一般是量子力学不稳定的.