补充材料

二维 $XO_2(X = Ni, Pd, Pt)$ 弹性、电子结构和热导率*

方文玉^{1)#} 陈粤^{1)#} 叶盼¹⁾ 魏皓然¹⁾ 肖兴林¹⁾

黎明锴^{1)†} Ahuja Rajeev²⁾ 何云斌^{1)‡}

1) (湖北大学材料科学与工程学院,铁电压电材料与器件湖北省重点实验室,高分子材料湖北 省重点实验室,

> 功能材料绿色制备与应用教育部重点实验室,武汉 430062) 2)(乌普萨拉大学物理与天文系凝聚态理论组,瑞典乌普萨拉 S-751-20) (2021年5月28日收到;2021年9月5日收到修改稿)

图 S1 二维黑磷烯的平面刚度和形变势拟合示意图 (a) 晶胞总能的增量在不同应变量下的 二次曲线拟合; (b), (c) *a* 和 *b* 两个方向上 VBM 和 CBM 相对真空能级的位置,与应变量之 间做线性拟合

Fig. S1. Schematic diagram of plane stiffness and deformation potential of monolayer phosphorene: (a) Quadratic fitting of the energy difference to the uniaxial strain are used to calculate the plane stiffness; (b) and (c) linear fitting of the energy of VBM and CBM relative to the uniaxial strain along *a* and *b* direction, which are used to calculate the deformation potential.

Table S1. Vacuum-level of monolayer AO ₂ and BF at different strains.										
Monolayers	Along armchair/a direction /eV				host	Along z	Along zigzag/b direction /eV			
	s <u>-</u> 2%	-1%	1%	2%	0.0%	-2%	-1%	1%	2%	
NiO ₂	1.845	1.825	1.788	1.770	1.806	1.845	1.825	1.788	1.770	
PdO ₂	1.895	1.874	1.833	1.813	1.853	1.895	1.874	1.833	1.813	
PtO ₂	1.916	1.895	1.854	1.834	1.875	1.916	1.895	1.854	1.834	
BP	2.764	2.810	2.787	2.741	2.720	2.810	2.787	2.741	2.719	

表 S1 二维 XO₂和 BP 在不同应变下的真空能级 Table S1 Vacuum-level of monolayer XO₂ and BP at different strains

图 S2 单层黑磷烯的(a)声子谱、(b) 群速度、(c) 声子寿命和(c) 晶格热导率 Fig. S2. (a) Phonon dispersion, (b) group velocity, (c) phonon lifetime and lattice thermal conductivity of Phosphorene