Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of displacement damage induced by protons incident on AlxGa1–xN materials

He Huan Bai Yu-Rong Tian Shang Liu Fang Zang Hang Liu Wen-Bo Li Pei He Chao-Hui

Citation:

Simulation of displacement damage induced by protons incident on AlxGa1–xN materials

He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui
PDF
HTML
Get Citation
  • Gallium nitride materials, due to their excellent electrical properties and irradiation resistance, are expected to be used in future space electronics systems where electronic devices are composed of different amounts of AlxGa1–xN materials. However, most of their displacement damage studies currently focus on GaN materials, and less on AlxGa1–xN materials themselves. The mechanism of displacement damage induced by 10-keV to 300-MeV protons incident on AlxGa1–xN materials with different Al content is investigated by binary collision approximation method. The results show that the non-ionization energy loss of AlxGa1–xN material decreases with proton energy increasing. When the proton energy is lower than 40 MeV, the non-ionization energy loss becomes larger with the increase of Al content, while the trend is reversed when the proton energy increases. Analyzing the primary knock-on atoms and non-ionizing energy deposition caused by protons, it is found that the primary knock-on atoms’ spectra of different AlxGa1–xN materials are similar, but the higher the content of Al, the higher the proportion of the self primary knock-on atoms generated by elastic collisions is. For the non-ionizing energy deposition produced by protons at different depths, the energy deposition due to elastic collisions is largest at the end of the trajectory, while the energy deposition due to inelastic collisions is uniformly distributed in the front of the trajectory but decreases at the end of the trajectory. This study provides a good insight into the applications of GaN materials and devices in space radiation environment.
      Corresponding author: Liu Wen-Bo, liuwenbo@xjtu.edu.cn ; Li Pei, lipei0916@xjtu.edu.cn ; He Chao-Hui, hechaohui@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975179).
    [1]

    郝跃, 张金风, 张进成, 马晓华, 郑雪峰 2015 科学通报 10 874

    Hao Y, Zhang J F, Zhang J C, Ma X H, Zheng X F 2015 Chin. Sci. Bull. 10 874

    [2]

    Zhang Y, Dadgar A, Palacios T 2018 J. Phys. D: Appl. Phys 51 273001

    [3]

    Pearton S, Ren F, Patrick E, Law M, Polyakov A Y 2015 ECS J. Solid State Sci. Technol. 5 Q35Google Scholar

    [4]

    Richard Y, Guzmann D, Smith D 2014 The 4S Symposium Majorca, Spain, May 26–30, 2014 p20141

    [5]

    Valenta V, Loughnane G, Espana C, Latti J, Barnes A, Roux J P, del Rio O, Rubio-Cidre G, Ramirez-Torres M, Serru V, Caille L 2022 17th European Microwave Integrated Circuits Conference (EuMIC) Milan, Italy, September 26–27, 2022 p41

    [6]

    陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 10 978

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull. 10 978

    [7]

    Hu X, Choi B K, Barnaby H J, Fleetwood D M, Schrimpf R D, Lee S, Shojah- Ardalan S, Wilkins R, Mishra U K, Dettmer R W 2004 IEEE T. Nucl. Sci. 51 293Google Scholar

    [8]

    Zhu T, Zheng X F, Wang J, Wang M S, Chen K, Wang X H, Du M, Ma P J, Zhang H, Lv L, Cao Y R, Ma X H, Hao Y, 2021 IEEE T. Nucl. Sci. 68 2616Google Scholar

    [9]

    Chen J, Puzyrev Y S, Jiang R, Zhang E X, McCurdy M W, Fleetwood D M, Schrimpf R D, Pantelides S T, Arehart A R, Ringel S A, Saunier P, Lee C 2015 IEEE T. Nucl. Sci. 62 2423Google Scholar

    [10]

    He H, Liao W L, Wang Y Z, Liu W B, Zang H, He C H 2021 Comput. Mater. Sci. 196 110554Google Scholar

    [11]

    Lo C, Chang C, Chu B, Kim H Y, Kim J, Cullen D A, Zhou L, Smith D, Pearton S, Dabiran A, Ren F 2010 J. Vac. Sci. Technol. B 28 L47Google Scholar

    [12]

    Lü L, Ma J G, Cao Y R, Zhang J C, Zhang W, Li L, Xu S R, Ma X H, Ren X T, Hao Y 2011 Microelectron. Reliab. 51 2168Google Scholar

    [13]

    Lyons J L, Wickramaratne D, Van de Walle C G 2021 J. Appl. Phys. 129 111101Google Scholar

    [14]

    Wan P F, Li W Q, Xu X D, Wei Y D, Jiang H, Yang J Q, Shao G J, Lin G, Peng C, Zhang Z G, Li X J 2022 Appl. Phys. Lett. 121 092102Google Scholar

    [15]

    Wang Y Z, Zheng X F, Zhu T, Yue S Z, Pan A L, Xu S R, Li P X, Ma X H, Zhang J C, Guo L X, Hao Y 2023 Appl. Phys. Lett. 122 143501Google Scholar

    [16]

    Weaver B, Martin P, Boos J, Cress C 2012 IEEE T. Nucl. Sci. 59 3077Google Scholar

    [17]

    Zhang Z, Arehart A R, Cinkilic E, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, McSkimming B, Speck J S, Ringel S A 2013 Appl. Phys. Lett. 103 042102Google Scholar

    [18]

    He H, He C H, Zhang J H, Liao W L, Zang H, Li Y H, Liu W B 2020 Nucl. Eng. Technol. 52 1537Google Scholar

    [19]

    Akkerman A, Barak J, Chadwick M, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301Google Scholar

    [20]

    Akkerman A, Barak J, Murat M 2020 IEEE T. Nucl. Sci. 67 1813Google Scholar

    [21]

    Khanna S M, Estan D, Erhardt L S, Houdayer A, Carlone C, Ionascut- Nedelcescu A, Messenger S R, Walters R J, Summers G P, Warner J H, Jun I 2004 IEEE T. Nucl. Sci. 51 2729Google Scholar

    [22]

    Liu L, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C, Li B 2023 T. Trans. Nucl. Sci. 70 1885Google Scholar

    [23]

    Nord J, Nordlund K, Keinonen J 2003 Phys. Rev. B 68 184104Google Scholar

    [24]

    唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 65 024212Google Scholar

    Tang D, He C H, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 024212Google Scholar

    [25]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [26]

    Chen N J, Rasch E, Huang D H, Heller E R, Gao F 2018 IEEE T. Nucl. Sci. 65 1108Google Scholar

    [27]

    Keum D, Kim H 2018 ECS J. Solid State Sci. Technol 7 Q159Google Scholar

    [28]

    Hayes M, Auret F, Wu L, Meyer W, Nel J, Legodi M 2003 Physica B 340 421Google Scholar

    [29]

    Jun I, Xapsos M A, Burke E A 2004 IEEE T. Nucl. Sci. 51 3207Google Scholar

    [30]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE T. Nucl. Sci. 50 1924Google Scholar

    [31]

    Lindhard J, Nielsen V, Scharff M, Thomsen P 1963 Kgl. Danske Videnskab., Selskab. Mat. Fys. Medd. 33 1

    [32]

    Robinson M T 1994 J. Nucl. Mater. 216 1Google Scholar

    [33]

    Akkerman A, Barak J 2006 IEEE T. Nucl. Sci. 53 3667Google Scholar

    [34]

    Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE T. Nucl. Sci. 53 270Google Scholar

    [35]

    Agostinelli S, Allison J, Amako K a, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G 2003 Nucl. Instrum. Methods Phys. Res. A 506 250Google Scholar

    [36]

    Weller R A, Mendenhall M H, Fleetwood D M 2004 IEEE T. Nucl. Sci. 51 3669Google Scholar

    [37]

    Mendenhall M H, Weller R A 2005 Nucl. Instrum. Methods Phys. Res. B 227 420Google Scholar

    [38]

    Xiao H, Gao F, Zu X T, Weber W J 2009 J. Appl. Phys. 105 123527Google Scholar

    [39]

    Xi J, Liu B, Zhang Y, Weber W J 2018 J. Appl. Phys. 123 045904Google Scholar

    [40]

    Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2016 IEEE T. Nucl. Sci. 64 133Google Scholar

    [41]

    Jay A, Raine M, Richard N, Mousseau N, Goiffon V, Hémeryck A, Magnan P 2016 IEEE T. Nucl. Sci. 64 141Google Scholar

    [42]

    Stoller R E 2000 J. Nucl. Mater. 276 22Google Scholar

    [43]

    Rayaprolu R, Möller S, Linsmeier C, Spellerberg S 2016 Nucl. Mater. Energy 9 29Google Scholar

    [44]

    Wirth B D, Odette G R, Marian J, Ventelon L, Young-Vandersall J A, Zepeda-Ruiz L A 2004 J. Nucl. Mater. 329 103Google Scholar

  • 图 1  位移损伤模型 (a) 薄靶近似模型; (b) 无限厚靶模型

    Figure 1.  Displacement damage models: (a) Thin target approximation model; (b) infinite thick target model.

    图 2  不同能量质子在 GaN材料中产生的 NIEL大小, 与文献[21]值比较

    Figure 2.  The values of NIEL in GaN material induced by protons with different energies, compared with values from Ref. [21].

    图 3  不同能量质子在AlxGa1–xN材料中产生的 NIEL大小

    Figure 3.  The values of NIEL in AlxGa1–xN materials induced by protons with different energies.

    图 4  不同能量质子在 GaN材料中产生的 PKA 信息 (a) PKA总能谱; (b) 不同类型 PKA占比

    Figure 4.  PKA information induced by protons with different energies in GaN material: (a) Overall PKA energy spectra; (b) fraction of different types of PKA.

    图 5  不同能量质子在AlxGa1–xN材料中产生弹性碰撞事件的占比

    Figure 5.  The fraction of elastic collision events in AlxGa1–xN materials induced by protons with different energies.

    图 6  不同能量质子在AlxGa1–xN材料中沉积的Tdam随深度分布 (a) 150 keV; (b) 10 MeV; (c) 50 MeV; (d) 200 MeV

    Figure 6.  Distribution of deposited Tdam with depth in AlxGa1–xN materials irradiated by protons with different energies: (a) 150 keV; (b) 10 MeV; (c) 50 MeV; (d) 200 MeV.

    图 7  (a) 150 keV, (b) 10 MeV, (c) 50 MeV, (d) 200 MeV质子在 GaN 材料中沉积的 Tdam (红色) 以及产生的PKA 数目 (蓝色) 随深度分布, 其中实线为弹性碰撞事件, 虚线为非弹性碰撞事件

    Figure 7.  Distribution of deposited Tdam (Red) and produced PKAs (Blue) with depth in AlxGa1–xN mate rials irradiated by protons of (a) 150 keV, (b )10 MeV, (c) 50 MeV, (d) 200 MeV. The solid lines and the dashed lines correspond to elastic and inelastic collision events.

    Baidu
  • [1]

    郝跃, 张金风, 张进成, 马晓华, 郑雪峰 2015 科学通报 10 874

    Hao Y, Zhang J F, Zhang J C, Ma X H, Zheng X F 2015 Chin. Sci. Bull. 10 874

    [2]

    Zhang Y, Dadgar A, Palacios T 2018 J. Phys. D: Appl. Phys 51 273001

    [3]

    Pearton S, Ren F, Patrick E, Law M, Polyakov A Y 2015 ECS J. Solid State Sci. Technol. 5 Q35Google Scholar

    [4]

    Richard Y, Guzmann D, Smith D 2014 The 4S Symposium Majorca, Spain, May 26–30, 2014 p20141

    [5]

    Valenta V, Loughnane G, Espana C, Latti J, Barnes A, Roux J P, del Rio O, Rubio-Cidre G, Ramirez-Torres M, Serru V, Caille L 2022 17th European Microwave Integrated Circuits Conference (EuMIC) Milan, Italy, September 26–27, 2022 p41

    [6]

    陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 10 978

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull. 10 978

    [7]

    Hu X, Choi B K, Barnaby H J, Fleetwood D M, Schrimpf R D, Lee S, Shojah- Ardalan S, Wilkins R, Mishra U K, Dettmer R W 2004 IEEE T. Nucl. Sci. 51 293Google Scholar

    [8]

    Zhu T, Zheng X F, Wang J, Wang M S, Chen K, Wang X H, Du M, Ma P J, Zhang H, Lv L, Cao Y R, Ma X H, Hao Y, 2021 IEEE T. Nucl. Sci. 68 2616Google Scholar

    [9]

    Chen J, Puzyrev Y S, Jiang R, Zhang E X, McCurdy M W, Fleetwood D M, Schrimpf R D, Pantelides S T, Arehart A R, Ringel S A, Saunier P, Lee C 2015 IEEE T. Nucl. Sci. 62 2423Google Scholar

    [10]

    He H, Liao W L, Wang Y Z, Liu W B, Zang H, He C H 2021 Comput. Mater. Sci. 196 110554Google Scholar

    [11]

    Lo C, Chang C, Chu B, Kim H Y, Kim J, Cullen D A, Zhou L, Smith D, Pearton S, Dabiran A, Ren F 2010 J. Vac. Sci. Technol. B 28 L47Google Scholar

    [12]

    Lü L, Ma J G, Cao Y R, Zhang J C, Zhang W, Li L, Xu S R, Ma X H, Ren X T, Hao Y 2011 Microelectron. Reliab. 51 2168Google Scholar

    [13]

    Lyons J L, Wickramaratne D, Van de Walle C G 2021 J. Appl. Phys. 129 111101Google Scholar

    [14]

    Wan P F, Li W Q, Xu X D, Wei Y D, Jiang H, Yang J Q, Shao G J, Lin G, Peng C, Zhang Z G, Li X J 2022 Appl. Phys. Lett. 121 092102Google Scholar

    [15]

    Wang Y Z, Zheng X F, Zhu T, Yue S Z, Pan A L, Xu S R, Li P X, Ma X H, Zhang J C, Guo L X, Hao Y 2023 Appl. Phys. Lett. 122 143501Google Scholar

    [16]

    Weaver B, Martin P, Boos J, Cress C 2012 IEEE T. Nucl. Sci. 59 3077Google Scholar

    [17]

    Zhang Z, Arehart A R, Cinkilic E, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, McSkimming B, Speck J S, Ringel S A 2013 Appl. Phys. Lett. 103 042102Google Scholar

    [18]

    He H, He C H, Zhang J H, Liao W L, Zang H, Li Y H, Liu W B 2020 Nucl. Eng. Technol. 52 1537Google Scholar

    [19]

    Akkerman A, Barak J, Chadwick M, Levinson J, Murat M, Lifshitz Y 2001 Radiat. Phys. Chem. 62 301Google Scholar

    [20]

    Akkerman A, Barak J, Murat M 2020 IEEE T. Nucl. Sci. 67 1813Google Scholar

    [21]

    Khanna S M, Estan D, Erhardt L S, Houdayer A, Carlone C, Ionascut- Nedelcescu A, Messenger S R, Walters R J, Summers G P, Warner J H, Jun I 2004 IEEE T. Nucl. Sci. 51 2729Google Scholar

    [22]

    Liu L, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C, Li B 2023 T. Trans. Nucl. Sci. 70 1885Google Scholar

    [23]

    Nord J, Nordlund K, Keinonen J 2003 Phys. Rev. B 68 184104Google Scholar

    [24]

    唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 65 024212Google Scholar

    Tang D, He C H, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 024212Google Scholar

    [25]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [26]

    Chen N J, Rasch E, Huang D H, Heller E R, Gao F 2018 IEEE T. Nucl. Sci. 65 1108Google Scholar

    [27]

    Keum D, Kim H 2018 ECS J. Solid State Sci. Technol 7 Q159Google Scholar

    [28]

    Hayes M, Auret F, Wu L, Meyer W, Nel J, Legodi M 2003 Physica B 340 421Google Scholar

    [29]

    Jun I, Xapsos M A, Burke E A 2004 IEEE T. Nucl. Sci. 51 3207Google Scholar

    [30]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE T. Nucl. Sci. 50 1924Google Scholar

    [31]

    Lindhard J, Nielsen V, Scharff M, Thomsen P 1963 Kgl. Danske Videnskab., Selskab. Mat. Fys. Medd. 33 1

    [32]

    Robinson M T 1994 J. Nucl. Mater. 216 1Google Scholar

    [33]

    Akkerman A, Barak J 2006 IEEE T. Nucl. Sci. 53 3667Google Scholar

    [34]

    Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE T. Nucl. Sci. 53 270Google Scholar

    [35]

    Agostinelli S, Allison J, Amako K a, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G 2003 Nucl. Instrum. Methods Phys. Res. A 506 250Google Scholar

    [36]

    Weller R A, Mendenhall M H, Fleetwood D M 2004 IEEE T. Nucl. Sci. 51 3669Google Scholar

    [37]

    Mendenhall M H, Weller R A 2005 Nucl. Instrum. Methods Phys. Res. B 227 420Google Scholar

    [38]

    Xiao H, Gao F, Zu X T, Weber W J 2009 J. Appl. Phys. 105 123527Google Scholar

    [39]

    Xi J, Liu B, Zhang Y, Weber W J 2018 J. Appl. Phys. 123 045904Google Scholar

    [40]

    Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2016 IEEE T. Nucl. Sci. 64 133Google Scholar

    [41]

    Jay A, Raine M, Richard N, Mousseau N, Goiffon V, Hémeryck A, Magnan P 2016 IEEE T. Nucl. Sci. 64 141Google Scholar

    [42]

    Stoller R E 2000 J. Nucl. Mater. 276 22Google Scholar

    [43]

    Rayaprolu R, Möller S, Linsmeier C, Spellerberg S 2016 Nucl. Mater. Energy 9 29Google Scholar

    [44]

    Wirth B D, Odette G R, Marian J, Ventelon L, Young-Vandersall J A, Zepeda-Ruiz L A 2004 J. Nucl. Mater. 329 103Google Scholar

  • [1] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu. K-X rays induced by helium-like C ions in thick target atoms of different metals. Acta Physica Sinica, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui. Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit. Acta Physica Sinica, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [3] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [4] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [6] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Wojtek Hajdas. Prediction of proton single event upset sensitivity based on heavy ion test data in nanometer hardened static random access memory. Acta Physica Sinica, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [7] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [8] Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong. Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary. Acta Physica Sinica, 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [9] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [10] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Liu Shi-Dong, Mei Ce-Xiang, Chen Xi-Meng, Xiao Guo-Qing. Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity. Acta Physica Sinica, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [11] Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang. Multi-scale simulations of single particle displacement damage in silicon. Acta Physica Sinica, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [12] Zhao Wen, Guo Xiao-Qiang, Chen Wei, Qiu Meng-Tong, Luo Yin-Hong, Wang Zhong-Ming, Guo Hong-Xia. Effects of nuclear reactions between protons and metal interconnect overlayers on single event effects of micro/nano scaled static random access memory. Acta Physica Sinica, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [13] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Guo Xiao-Qiang, Zhao Wen, Ding Li-Li, Wang Yuan-Ming. Angular dependence of proton single event multiple-cell upsets in nanometer SRAM. Acta Physica Sinica, 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [14] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [15] Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing. Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon. Acta Physica Sinica, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [16] Che Chi, Liu Qing-Feng, Ma Jing, Zhou Yan-Ping. Displacement damage effects on the characteristics of quantum dot lasers. Acta Physica Sinica, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [17] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [18] Ma Jing, Che Chi, Han Qi-Qi, Zhou Yan-Ping, Tan Li-Ying. Displacement damage effect on the characteristics of quantum well laser. Acta Physica Sinica, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [19] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [20] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
Metrics
  • Abstract views:  1969
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2023
  • Accepted Date:  16 November 2023
  • Available Online:  30 November 2023
  • Published Online:  05 March 2024

/

返回文章
返回
Baidu
map