Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of strong laser field on nuclear α decay

Zhang Kai-Lin Han Sheng-Xian Yue Sheng-Jun Liu Zuo-Ye Hu Bi-Tao

Citation:

Influence of strong laser field on nuclear α decay

Zhang Kai-Lin, Han Sheng-Xian, Yue Sheng-Jun, Liu Zuo-Ye, Hu Bi-Tao
PDF
HTML
Get Citation
  • With the development of pulse amplification and compression technology, the peak power of the pulse has been improved by several orders of magnitude, and it is possible for the ultra strong laser field to affect nuclei directly. The α decay, as one of the most major forms in nuclear reaction, is a critical research topic in nuclear physics. According to the theory of Gamow model explaining nuclear α decay in quantum mechanics, double folding model solving nuclear potential energy, and cluster model describing atomic nucleus, we present a complete set of solutions for the half-life of nuclear α decay to study the influence of ultra strong laser field on nuclear α decay. These half-lives of α decay of different nuclei from medium to heavy in the absence of laser field are obtained, which accord well with the experimental data. Subsequently, we introduce the effects of ultra strong laser field into our theoretical method to achieve the variations of the half-life of nuclear α decay. Considering that the optical period of the laser pulse is much longer than the theoretical tunneling time and the Lorentz force is much smaller than the Coulomb force, the laser field is treated as an electrostatic field. The results show that the half-life of nuclear α decay will reduce about 0.1% by the strong laser field with a peak power density of about 1.0×1026 W/cm2, demonstrating that the half-life of nuclear α decay is effectively affected by the strong laser field. Furthermore, the influences of the nuclear parameters, e.g. total quantum number G describing α particle orbits, and α decay reaction energy Qα, on the variations of these half-lives of α decay of different nuclei are discussed with the help of the calculation results. The dependence of the half-lives of nuclear α decay on the laser peak power density is also explained correspondingly. In summary, we provide a more accurate method of calculating the half-life of nuclear α decay, which is used to study the influences of ultra strong laser field on these half-lives of nuclear α decay of different nuclei. With the further construction of strong laser devices, more interesting phenomena and results will be found from the experiment on the atomic nucleus under strong laser field.
      Corresponding author: Hu Bi-Tao, hubt@lzu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE0103900), the National Natural Science Foundation of China (Grant Nos. 12374266, 12027809), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2022-ey05, lzujbky-2023-stlt01).
    [1]

    Gamow G 1928 Z. Phys. 51 204Google Scholar

    [2]

    Gurney R W, Condon E U 1929 Phys. Rev. 33 127Google Scholar

    [3]

    Yahya W A, Kimene Kaya B D C 2022 Int. J. Mod. Phys. E 31 2250002

    [4]

    Gontchar I I, Chushnyakova M V 2010 Comput. Phys. Commun. 181 168Google Scholar

    [5]

    Deng J G, Zhao J C, Chu P C, Li X H 2018 Phys. Rev. C 97 044322Google Scholar

    [6]

    邓军刚 2022 博士学位论文 (兰州: 兰州大学)第27—44页

    Deng J G 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University) pp27–44

    [7]

    Qian Y, Ren Z 2014 Phys. Lett. B 738 87Google Scholar

    [8]

    Mourou G 2019 Rev. Mod. Phys. 91 030501Google Scholar

    [9]

    沈百飞, 吉亮亮, 张晓梅, 步志刚, 徐建彩 2021 70 084101Google Scholar

    Shen B F, Ji L L, Zhang X M, Bu Z G, Xu J C 2021 Acta Phys. Sin. 70 084101Google Scholar

    [10]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899Google Scholar

    [11]

    席晓峰, 郭冰, 符长波, 吕冲, 张国强 2023 原子能科学技术 57 865Google Scholar

    Xi X F, Guo B, Fu C B, Lü C, Zhang G Q 2023 At. Energy Sci. Technol. 57 865Google Scholar

    [12]

    Castañeda Cortés H M 2012 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität) pp69–103

    [13]

    Buck B, Merchant A C, Perez S M 1990 Phys. Rev. Lett. 65 2975Google Scholar

    [14]

    Qi J T, Li T, Xu R H, Fu L B, Wang X 2019 Phys. Rev. C 99 044610Google Scholar

    [15]

    Delion D S, Ghinescu S A 2017 Phys. Rev. Lett. 119 202501Google Scholar

    [16]

    Wang X 2020 Phys. Rev. C 102 011601Google Scholar

    [17]

    Qi J 2022 Nucl. Phys. A 1020 122394Google Scholar

    [18]

    Qi J, Fu L 2020 Phys. Rev. C 102 064629Google Scholar

    [19]

    Pálffy A, Popruzhenko S V 2020 Phys. Rev. Lett. 124 212505Google Scholar

    [20]

    Cortés H C, Popruzhenko S V, Bauer D, Pálffy A 2011 New J. Phys. 13 063007Google Scholar

    [21]

    Queisser F, Schützhold R 2019 Phys. Rev. C 100 041601

    [22]

    Ur C A, Balabanski D, Cata-Danil G, Gales S, Morjan I, Tesileanu O, UrsescuD, Ursu I, Zamfir N V 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 355 198Google Scholar

    [23]

    Balabanski D L, Constantin P, Rotaru A, State A 2019 Hyperfine Interact. 240 49Google Scholar

    [24]

    Zhang Z X, Wu F X, Hu J B, Yang X J, Gui J Y, Ji P H, Liu X Y, Wang C, Liu Y Q, Lu X M, Xu Y, Leng Y X, Li R X, Xu Z Z 2020 High Power Laser Sci. Eng. 8 e4Google Scholar

    [25]

    Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang J Y, Huang P, Cao H, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z 2018 Opt. Lett. 43 5681Google Scholar

    [26]

    Buck B, Merchant A C, Perez S M 1991 J. Phys. G: Nucl. Part. Phys. 17 1223

    [27]

    Bertsch G, Borysowicz J, McManus H, Love W G 1977 Nucl. Phys. A 284 399Google Scholar

    [28]

    Wildermuth K, Kanellopoulos T 1958 Nucl. Phys. 7 150Google Scholar

    [29]

    卢希庭 2000 原子核物理 (修订版) (北京: 原子能出版社) 第22页

    Lu X T 2000 Nuclear Physics (Rev. Ed.) (Beijing: Atomic Energy Publishing House) p22

    [30]

    Jeffreys H 1925 Proceedings of the London Mathematical Society s2-23 428Google Scholar

    [31]

    邢凤竹, 崔建坡, 王艳召, 顾建中 2022 71 062301Google Scholar

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2022 Acta Phys. Sin. 71 062301Google Scholar

    [32]

    Maroufi N, Dehghani V, Alavi S A 2019 Nucl. Phys. A 983 77Google Scholar

    [33]

    Sinha B 1975 Phys. Rep. 20 1Google Scholar

    [34]

    Satchler G R, Love W G 1979 Phys. Rep. 55 183Google Scholar

    [35]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [36]

    Landau L D, Lifshitz E M 2013 Quantum Mechanics: Non-relativistic Theory (Castellana: Elsevier) p472

    [37]

    Royer G 2010 Nucl. Phys. A 848 279Google Scholar

    [38]

    Basu D N 2003 Phys. Lett. B 566 90Google Scholar

    [39]

    Heisenberg W, Euler H 1936 Z. Phys. 98 714Google Scholar

    [40]

    Sauter F 1931 Z. Phys. 69 742Google Scholar

    [41]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

  • 图 1  原子核半衰期数值计算结果及对比

    Figure 1.  Results and comparison of nuclear half-lives.

    图 2  G值(a)和Qα值(b)与激光诱导作用的相关性

    Figure 2.  Correlation between G (a) and Qα (b) values and laser induction.

    图 3  激光功率密度与激光诱导作用的相关性

    Figure 3.  Correlation between laser power density and laser induction.

    表 1  原子核半衰期数值计算结果及对比, 其中核素的实验数据及不同理论方法计算数据分别来自文献[7,19,37,38]

    Table 1.  Calculation results and comparison of nuclear half-lives. These data are from Refs. [7,19,37,38].

    核素 Qα/MeV R/fm $ {T}_{1/2}^{{\mathrm{e}}{\mathrm{x}}} $/s $ {T}_{1/2}^{{\mathrm{c}}{\mathrm{a}}{\mathrm{l}}} $/s $ {T}_{1/2}^{{\mathrm{r}}{\mathrm{e}}{\mathrm{f}}} $/s 文献 n/%
    $ {}_{60}^{144}{\mathrm{N}}{\mathrm{d}} $ 1.907 7.755 (7.222±0.505)×1022 7.371×1022 5.600×1022 [19] 0.304
    $ {}_{62}^{146}{\mathrm{S}}{\mathrm{m}} $ 2.529 7.758 (2.144±0.221)×1015 1.889×1015 2.176×1015 [7] 0.180
    $ {}_{64}^{152}{\mathrm{G}}{\mathrm{d}} $ 2.205 7.786 (3.406±0.252)×1021 3.640×1021 6.276×1021 [7] 0.240
    $ {}_{68}^{154}{\mathrm{E}}{\mathrm{r}} $ 4.280 7.767 (4.786±0.266)×104 2.294×104 3.890×104 [37] 0.072
    $ {}_{70}^{158}{\mathrm{Y}}{\mathrm{b}} $ 4.180 7.790 (4.266±0.517)×106 5.709×106 4.169×105 [38] 0.074
    $ {}_{72}^{174}{\mathrm{H}}{\mathrm{f}} $ 2.559 8.161 (6.307±1.261)×1022 4.944×1022 1.397×1023 [7] 0.250
    $ {}_{74}^{162}{\mathrm{W}} $ 5.675 7.787 1.390±0.142 2.752 2.450 [19] 0.035
    $ {}_{76}^{186}{\mathrm{O}}{\mathrm{s}} $ 2.822 7.887 (6.307±3.469)×1022 7.679×1022 4.226×1022 [7] 0.235
    $ {}_{78}^{190}{\mathrm{P}}{\mathrm{t}} $ 3.243 7.895 (2.050±0.095)×1019 2.422×1019 5.248×1018 [37] 0.195
    $ {}_{80}^{178}{\mathrm{H}}{\mathrm{g}} $ 6.580 7.820 0.363±0.010 0.416 0.091 [38] 0.034
    $ {}_{84}^{212}{\mathrm{P}}{\mathrm{o}} $ 8.953 8.676 (2.990±0.002)×10–7 2.615×10–7 1.600×10–7 [19] 0.052
    $ {}_{87}^{219}{\mathrm{F}}{\mathrm{r}} $ 7.460 8.457 (1.995±0.517)×10–2 3.079×10–2 3.020×10–2 [38] 0.072
    $ {}_{88}^{220}{\mathrm{R}}{\mathrm{a}} $ 7.600 8.463 (2.512±0.060)×10–2 2.728×10–2 1.660×10–2 [38] 0.066
    $ {}_{90}^{222}{\mathrm{T}}{\mathrm{h}} $ 8.133 8.467 (2.818±0.302)×10–3 3.433×10–3 2.188×10–3 [38] 0.062
    $ {}_{92}^{238}{\mathrm{U}} $ 4.274 8.918 (1.400±0.175)×1017 3.070×1017 4.300×1017 [19] 0.213
    $ {}_{94}^{238}{\mathrm{P}}{\mathrm{u}} $ 5.593 9.196 (2.771±0.003)×109 2.930×109 4.400×109 [19] 0.139
    DownLoad: CSV
    Baidu
  • [1]

    Gamow G 1928 Z. Phys. 51 204Google Scholar

    [2]

    Gurney R W, Condon E U 1929 Phys. Rev. 33 127Google Scholar

    [3]

    Yahya W A, Kimene Kaya B D C 2022 Int. J. Mod. Phys. E 31 2250002

    [4]

    Gontchar I I, Chushnyakova M V 2010 Comput. Phys. Commun. 181 168Google Scholar

    [5]

    Deng J G, Zhao J C, Chu P C, Li X H 2018 Phys. Rev. C 97 044322Google Scholar

    [6]

    邓军刚 2022 博士学位论文 (兰州: 兰州大学)第27—44页

    Deng J G 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University) pp27–44

    [7]

    Qian Y, Ren Z 2014 Phys. Lett. B 738 87Google Scholar

    [8]

    Mourou G 2019 Rev. Mod. Phys. 91 030501Google Scholar

    [9]

    沈百飞, 吉亮亮, 张晓梅, 步志刚, 徐建彩 2021 70 084101Google Scholar

    Shen B F, Ji L L, Zhang X M, Bu Z G, Xu J C 2021 Acta Phys. Sin. 70 084101Google Scholar

    [10]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899Google Scholar

    [11]

    席晓峰, 郭冰, 符长波, 吕冲, 张国强 2023 原子能科学技术 57 865Google Scholar

    Xi X F, Guo B, Fu C B, Lü C, Zhang G Q 2023 At. Energy Sci. Technol. 57 865Google Scholar

    [12]

    Castañeda Cortés H M 2012 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität) pp69–103

    [13]

    Buck B, Merchant A C, Perez S M 1990 Phys. Rev. Lett. 65 2975Google Scholar

    [14]

    Qi J T, Li T, Xu R H, Fu L B, Wang X 2019 Phys. Rev. C 99 044610Google Scholar

    [15]

    Delion D S, Ghinescu S A 2017 Phys. Rev. Lett. 119 202501Google Scholar

    [16]

    Wang X 2020 Phys. Rev. C 102 011601Google Scholar

    [17]

    Qi J 2022 Nucl. Phys. A 1020 122394Google Scholar

    [18]

    Qi J, Fu L 2020 Phys. Rev. C 102 064629Google Scholar

    [19]

    Pálffy A, Popruzhenko S V 2020 Phys. Rev. Lett. 124 212505Google Scholar

    [20]

    Cortés H C, Popruzhenko S V, Bauer D, Pálffy A 2011 New J. Phys. 13 063007Google Scholar

    [21]

    Queisser F, Schützhold R 2019 Phys. Rev. C 100 041601

    [22]

    Ur C A, Balabanski D, Cata-Danil G, Gales S, Morjan I, Tesileanu O, UrsescuD, Ursu I, Zamfir N V 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 355 198Google Scholar

    [23]

    Balabanski D L, Constantin P, Rotaru A, State A 2019 Hyperfine Interact. 240 49Google Scholar

    [24]

    Zhang Z X, Wu F X, Hu J B, Yang X J, Gui J Y, Ji P H, Liu X Y, Wang C, Liu Y Q, Lu X M, Xu Y, Leng Y X, Li R X, Xu Z Z 2020 High Power Laser Sci. Eng. 8 e4Google Scholar

    [25]

    Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang J Y, Huang P, Cao H, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z 2018 Opt. Lett. 43 5681Google Scholar

    [26]

    Buck B, Merchant A C, Perez S M 1991 J. Phys. G: Nucl. Part. Phys. 17 1223

    [27]

    Bertsch G, Borysowicz J, McManus H, Love W G 1977 Nucl. Phys. A 284 399Google Scholar

    [28]

    Wildermuth K, Kanellopoulos T 1958 Nucl. Phys. 7 150Google Scholar

    [29]

    卢希庭 2000 原子核物理 (修订版) (北京: 原子能出版社) 第22页

    Lu X T 2000 Nuclear Physics (Rev. Ed.) (Beijing: Atomic Energy Publishing House) p22

    [30]

    Jeffreys H 1925 Proceedings of the London Mathematical Society s2-23 428Google Scholar

    [31]

    邢凤竹, 崔建坡, 王艳召, 顾建中 2022 71 062301Google Scholar

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2022 Acta Phys. Sin. 71 062301Google Scholar

    [32]

    Maroufi N, Dehghani V, Alavi S A 2019 Nucl. Phys. A 983 77Google Scholar

    [33]

    Sinha B 1975 Phys. Rep. 20 1Google Scholar

    [34]

    Satchler G R, Love W G 1979 Phys. Rep. 55 183Google Scholar

    [35]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [36]

    Landau L D, Lifshitz E M 2013 Quantum Mechanics: Non-relativistic Theory (Castellana: Elsevier) p472

    [37]

    Royer G 2010 Nucl. Phys. A 848 279Google Scholar

    [38]

    Basu D N 2003 Phys. Lett. B 566 90Google Scholar

    [39]

    Heisenberg W, Euler H 1936 Z. Phys. 98 714Google Scholar

    [40]

    Sauter F 1931 Z. Phys. 69 742Google Scholar

    [41]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

  • [1] Xing Feng-Zhu, Cui Jian-Po, Wang Yan-Zhao, Gu Jian-Zhong. Two-proton emission from excited states of proton-rich nuclei. Acta Physica Sinica, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [2] Ji Liang-Liang, Geng Xue-Song, Wu Yi-Tong, Shen Bai-Fei, Li Ru-Xin. Laser-driven radiation-reaction effect and polarized particle acceleration. Acta Physica Sinica, 2021, 70(8): 085203. doi: 10.7498/aps.70.20210091
    [3] Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun. Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar. Acta Physica Sinica, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [4] Wei Liu-Lei, Cai Hong-Bo, Zhang Wen-Shuai, Tian Jian-Min, Zhang En-Hao, Xiong Jun, Zhu Shao-Ping. Enhancement of high-energy electron yield by interaction of ultra-intense laser pulses with micro-structured foam target. Acta Physica Sinica, 2019, 68(9): 094101. doi: 10.7498/aps.68.20182291
    [5] Cai Huai-Peng1\2, Gao Jian1\2, Li Bo-Yuan1\2, Liu Feng1\2, Chen Li-Ming1\2\3, Yuan Xiao-Hui1\2, Chen Min1\2, Sheng Zheng-Ming1\2\4\5, Zhang Jie1\2\3High order harmonics generation by relativistically circularly polarized laser-solid interaction. Acta Physica Sinica, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [6] Li Xia-Zhi, Zou De-Bin, Zhou Hong-Yu, Zhang Shi-Jie, Zhao Na, Yu De-Yao, Zhuo Hong-Bin. Effect of plasma grating roughness on high-order harmonic generation. Acta Physica Sinica, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [7] Yin Chuan-Lei, Wang Wei-Min, Liao Guo-Qian, Li Meng-Chao, Li Yu-Tong, Zhang Jie. Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses. Acta Physica Sinica, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [8] Sheng Zong-Qiang, Shu Liang-Ping, Meng Ying, Hu Ji-Gang, Qian Jian-Fa. Systematic calculations on cluster radioactivity half-lives of trans-lead nuclei with effective liquid drop model. Acta Physica Sinica, 2014, 63(16): 162302. doi: 10.7498/aps.63.162302
    [9] Wang Guang-Hui, Wang Xiao-Fang, Dong Ke-Gong. Ultra-short ultra-intense laser guiding and its influence on electron acceleration. Acta Physica Sinica, 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [10] Yan Chun-Yan, Zhang Qiu-Ju, Luo Mu-Hua. Generation of attosecond X-ray pulse in the interaction between the pulses and the relativistic electrons. Acta Physica Sinica, 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [11] Yan Chun-Yan, Zhang Qiu-Ju. Strong monochromatic harmonics generated by the interaction of two counter-propagating pulses with a foil target. Acta Physica Sinica, 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [12] Zhang Gao-Long, Le Xiao-Yun, Liu Hao. Calculation of half-lives of heavy cluster emission for heavy nuclei. Acta Physica Sinica, 2009, 58(4): 2300-2305. doi: 10.7498/aps.58.2300
    [13] XIA JIANG-FAN, ZHANG JUN, ZHANG JIE. MODELING THE ASTROPHYSICAL DYNAMICAL PROCESS WITH LASER-PLASMAS. Acta Physica Sinica, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
    [14] KONG QING, ZHU LI-JUN, WANG JIA-XIANG, HUO YU-KUN. ELECTRON DYNAMICS IN THE EXTRA-INTENSE STATIONARY LASER FIELD. Acta Physica Sinica, 1999, 48(4): 650-660. doi: 10.7498/aps.48.650
    [15] . Acta Physica Sinica, 1975, 24(1): 46-50. doi: 10.7498/aps.24.46
    [16] . Acta Physica Sinica, 1964, 20(5): 475-476. doi: 10.7498/aps.20.475
    [17] DAI YUAN-BEN. THE RADIATIVE DECAY OF AN ω PARTICLE. Acta Physica Sinica, 1964, 20(2): 131-136. doi: 10.7498/aps.20.131
    [18] РАСПАД Cs134. Acta Physica Sinica, 1960, 16(7): 401-412. doi: 10.7498/aps.16.401
    [19] GUO SHUO-HONG. THE RADIOATIVE DECAY OF π-MESON. Acta Physica Sinica, 1960, 16(5): 299-304. doi: 10.7498/aps.16.299
    [20] NING HU, MIN YU. ON THE THEORY OF BETA-DISINTEGRATION. Acta Physica Sinica, 1951, 8(3): 260-269. doi: 10.7498/aps.8.260
Metrics
  • Abstract views:  2351
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2023
  • Accepted Date:  09 November 2023
  • Available Online:  29 December 2023
  • Published Online:  20 March 2024

/

返回文章
返回
Baidu
map