-
With the development of condensed matter physics, space observation, and quantum technology in recent years, the demand for ultra-low temperature refrigeration has increased. The adiabatic demagnetization refrigerator (ADR) has the advantages of being unaffected by gravity, compact structure, and relatively low cost, which can meet the needs of space and ground applications. In this paper, a 50 mK multi-stage ADR is designed and developed which comprises a GM-type pulse tube cryocooler for precooling and three ADR stages connected in series. For easy installation and maintenance, the three ADR stages are placed on a separate cold plate which is connected to the 4 K cold plate via copper columns. The Dy3Ga5O12 (GGG) is employed as the refrigerant in the first stage, whereas CrK(SO4)2 · 12H2O (CPA) is utilized for the second stage and third stage. To control heat transfer between stages and the 4 K heat sink, active gas-gap heat switch and passive gas-gap heat switch are developed, with the latter having a switching ratio over 1000. The 4 T, 2 T and 1 T superconducting magnets are utilized in the 1st, 2nd and 3rd stage, respectively, and a numerical model is used to optimize the design of magnetic shielding. In addition, an ADR simulation model with a proportional-integral-derivative (PID) controller is constructed to assist in tuning the controller parameters in the experiment. The lowest temperature achieved in the experiment is 38 mK, with a temperature fluctuation of 10.6 μK. The durations of different cooling power (1, 2 and 3 μW) at 100 mK are also measured. It is calculated that the no-load maintenance time is about 4.3 h, the leakage heat power is about 4.5 μW, and the total cooling capacity is about 71 mJ. This refrigerator is the first Chinese multi-stage ADR that can reach a temperature under 50 mK, which lays an important foundation for subsequent research on continuous adiabatic demagnetization refrigeration. [1] Serlemitsos A T, Sansebastian M, Kunes E 1992 Cryogenics 32 117Google Scholar
[2] Serlemitsos A T, Sansebastian M, Kunes E S 1998 Advance in Cryogenic Engineering (Boston, MA: Springer) pp957–963
[3] Shirron P, Wegel D, Dipirro M 2006 Proceedings of 24th International Conference on Low Temperature Physics Orlando, Florida (USA), August 10–17, 2006 p1573
[4] Shirron P J, Kimball M O, Dipirro M J, Bials T G 2015 Phys. Procedia 67 250Google Scholar
[5] Bartlett J, Hardy G, Hepburn I D, Blatt C B, Coker P, Crofts E, Winter B, Milward S, Aller R S, Brownhill M, Reed J, Linder M, Rando N 2010 Cryogenics 50 582Google Scholar
[6] Bartlett J, Hardy G, Hepburn I, Milward S, Coker P, Theobald C 2012 Proceedings of SPIE Amsterdam Netherlands, September 24, 2012 p84521O
[7] Brasiliano D A P, Duval J M, Luchier N, Eserivan S D, Andre J 2016 International Cryocoolers Conference San Diego, California (USA) June 20–23, 2016 p479
[8] Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Dipirro M, Ezoe Y, Fujimoto R, den Herder J W, Hirabayashi M, Ishisaki Y, Kanao K, Kawaharada M, Kelley R, Kilbourne C, Kitamoto S, McCammon D, Mihara T, Murakami M, Nakagawa T, Ohashi T, Porter F S, Satoh Y, Shirron P, Sugita H, Tamagawa T, Tashiro M, Yoshida S 2008 Prococeedings of SPIE Marseille France, July 15, 2008 p70113R
[9] Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Masui K, Asano K, Ohashi T, Ezoe Y, Ishisaki Y, Fujimoto R, Sato K, Kanao K, Yoshida S 2010 Cryogenics 50 597Google Scholar
[10] Shirron P J, Canavan E R, Dipirro M J, Tuttle J G, Yeager C J 2000 Advance in Cryogenics Engineering. (Boston, MA: Springer) p1629
[11] ADR Cryostats, Formfactor https://www.formfactor.com/products/quantum- cryo/?_all_filters=adr-cryostats [2023-7-4
[12] Adiabatic Demagnetization Refrigerator, Entropy https://www.entropy- cryogenics.com/products/ [2023-7-4
[13] 万绍宁, 容锡燊 1987 低温 9 133Google Scholar
Wan S N, Rong X S 1987 Chin. J. Low Temp. Phys. 9 133Google Scholar
[14] 冉启泽, 李金万 1990 低温 12 131Google Scholar
Ran Q Z, Li J W 1990 Chin. J. Low Temp. Phys. 12 131Google Scholar
[15] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 70 090702Google Scholar
Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702Google Scholar
[16] 王昌 2022 博士学位论文 (北京: 中国科学院大学)
Wang C 2022 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences
[17] 禹芳秋, 沈俊, 戴巍, 李珂, 刘萍, 王昌 2022 中国工程热物理学会工程热力学与能源利用学术年会(2021)中国长沙, 4月9—10日, 2022
Yu F Q, Shen J, Dai W, Li K, Liu P, Wang C 2022 Annual Conference of Engineering Thermodynamics and Energy Utilization of The Chinese Society of Engineering Thermophysics (2021) Changsha, April 9–10, 2022
[18] Model 372 AC Resistance Bridge and Temperature Controller User’s Manual Lake Shore Cryotronics, Inc., 2019
[19] Model 2700 Multimeter/Switch System User’s Manual Keithley Instruments, 2016
[20] 李珂, 王昌, 戴巍, 沈俊 2021 中国稀土学会学术年会, 中国成都, 10月22—24日, 2021 第88页
Li K, Wang C, Dai W, Shen J 2021 Annual Conference of the Chinese Society of Rare Earths Chengdu, October 22–24, 2021 p88
-
-
[1] Serlemitsos A T, Sansebastian M, Kunes E 1992 Cryogenics 32 117Google Scholar
[2] Serlemitsos A T, Sansebastian M, Kunes E S 1998 Advance in Cryogenic Engineering (Boston, MA: Springer) pp957–963
[3] Shirron P, Wegel D, Dipirro M 2006 Proceedings of 24th International Conference on Low Temperature Physics Orlando, Florida (USA), August 10–17, 2006 p1573
[4] Shirron P J, Kimball M O, Dipirro M J, Bials T G 2015 Phys. Procedia 67 250Google Scholar
[5] Bartlett J, Hardy G, Hepburn I D, Blatt C B, Coker P, Crofts E, Winter B, Milward S, Aller R S, Brownhill M, Reed J, Linder M, Rando N 2010 Cryogenics 50 582Google Scholar
[6] Bartlett J, Hardy G, Hepburn I, Milward S, Coker P, Theobald C 2012 Proceedings of SPIE Amsterdam Netherlands, September 24, 2012 p84521O
[7] Brasiliano D A P, Duval J M, Luchier N, Eserivan S D, Andre J 2016 International Cryocoolers Conference San Diego, California (USA) June 20–23, 2016 p479
[8] Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Dipirro M, Ezoe Y, Fujimoto R, den Herder J W, Hirabayashi M, Ishisaki Y, Kanao K, Kawaharada M, Kelley R, Kilbourne C, Kitamoto S, McCammon D, Mihara T, Murakami M, Nakagawa T, Ohashi T, Porter F S, Satoh Y, Shirron P, Sugita H, Tamagawa T, Tashiro M, Yoshida S 2008 Prococeedings of SPIE Marseille France, July 15, 2008 p70113R
[9] Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Masui K, Asano K, Ohashi T, Ezoe Y, Ishisaki Y, Fujimoto R, Sato K, Kanao K, Yoshida S 2010 Cryogenics 50 597Google Scholar
[10] Shirron P J, Canavan E R, Dipirro M J, Tuttle J G, Yeager C J 2000 Advance in Cryogenics Engineering. (Boston, MA: Springer) p1629
[11] ADR Cryostats, Formfactor https://www.formfactor.com/products/quantum- cryo/?_all_filters=adr-cryostats [2023-7-4
[12] Adiabatic Demagnetization Refrigerator, Entropy https://www.entropy- cryogenics.com/products/ [2023-7-4
[13] 万绍宁, 容锡燊 1987 低温 9 133Google Scholar
Wan S N, Rong X S 1987 Chin. J. Low Temp. Phys. 9 133Google Scholar
[14] 冉启泽, 李金万 1990 低温 12 131Google Scholar
Ran Q Z, Li J W 1990 Chin. J. Low Temp. Phys. 12 131Google Scholar
[15] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 70 090702Google Scholar
Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702Google Scholar
[16] 王昌 2022 博士学位论文 (北京: 中国科学院大学)
Wang C 2022 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences
[17] 禹芳秋, 沈俊, 戴巍, 李珂, 刘萍, 王昌 2022 中国工程热物理学会工程热力学与能源利用学术年会(2021)中国长沙, 4月9—10日, 2022
Yu F Q, Shen J, Dai W, Li K, Liu P, Wang C 2022 Annual Conference of Engineering Thermodynamics and Energy Utilization of The Chinese Society of Engineering Thermophysics (2021) Changsha, April 9–10, 2022
[18] Model 372 AC Resistance Bridge and Temperature Controller User’s Manual Lake Shore Cryotronics, Inc., 2019
[19] Model 2700 Multimeter/Switch System User’s Manual Keithley Instruments, 2016
[20] 李珂, 王昌, 戴巍, 沈俊 2021 中国稀土学会学术年会, 中国成都, 10月22—24日, 2021 第88页
Li K, Wang C, Dai W, Shen J 2021 Annual Conference of the Chinese Society of Rare Earths Chengdu, October 22–24, 2021 p88
Catalog
Metrics
- Abstract views: 4509
- PDF Downloads: 152
- Cited By: 0