-
High metastable density is one of the research hotspots of optically pumped rare gas laser (OPRGL). Considering that the Ar metastable state energy level is only 20 cm–1 different from the Kr excited state 5p[3/2]2, argon gas is added to the He/Kr discharge system. Owing to the long lifetime of the Ar metastable state atoms, through the collision resonance energy transfer process of Ar(4s[3/2]2)→Kr(5p[3/2]2), the purpose of supplementing and increasing the metastable density of Kr (Kr*) can be realized. In the case of obtaining the same metastable density, the pressure of the discharge power source is reduced, and a new idea is provided for further obtaining a high metastable density in a large discharge volume. In this work, the experimental analysis is carried out from the perspectives of spectral diagnosis and measurement of metastable density by laser absorption spectroscopy. The results show that the peak of radiative transition line of Kr high energy level atoms participating in the collision to the metastable state energy level is significantly enhanced after adding argon, and the tail signal of the transition line is extended within one discharge cycle. Under the gas conditions of 100 mbar, 1% Kr and 12.5% Ar, the peak value of the spectral line can be enhanced by about 10 times, and the tail signal of the transition line can be extended from 0.6 μs to 14.25 μs. At the same time, the density of Kr metastable energy level atoms is measured under different Ar content. Under the gas conditions of 100 mbar, 15% Ar and 1% Kr, the density of Kr* increases from 4.94×1011 cm–3 to 6.96×1012 cm–3. At low pressure, the absorption linewidth of Kr metastable atoms narrows with the increase of Ar content. Under the gas condition of 600 mbar and 1% Kr, when the content of Ar is increased to 5%, the peak density of Kr* increases from 4.69×1013 cm–3 to 5.79×1013 cm–3, i.e. the increment is 20%. Although the enhancement of metastable-atom-generation at high pressure is not so significant as those at low pressure, an increasing trend can still be observed. The results verify that the Kr metastable atoms generated in each discharge period can be supplemented by Ar-Kr resonance energy transfer.
-
Keywords:
- optically pumped rare gas lasers /
- laser absorption spectroscopy /
- collision energy resonance transfer /
- spectral Diagnostics
[1] Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron. P. 58 0700003Google Scholar
[2] Krupke W F 2012 Prog. Quantum Electron. 36 4Google Scholar
[3] Pitz G A, Stalnaker D M, Guild E M, Oliker B Q, Moran P J, Townsend S W, Hostutler D A 2016 High Energy/ Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 972902
[4] 齐予, 易亨瑜, 黄吉金, 匡艳 2021 激光与光电子学进展 58 46
Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron P. 58 46
[5] Han J D, Heaven M C 2012 Opt. Lett. 37 2157Google Scholar
[6] Kim H, Hopwood J 2019 J. Appl. Phys. 126 163301Google Scholar
[7] Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A, Azyazov V N 2015 J. Quant. Spectrosc. Radiat. Transf. 164 1Google Scholar
[8] Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A 2015 Tunable Diode-laser Spectroscopy (TDLS) of 811.5 nm Ar Line for Ar(4s[3/2]2) Number Density Measurements in a 40 MHz RF Discharge (Vol. 9255) (SPIE) 92552W
[9] Mikheyev P A, Chernyshov A K, Ufimtsev N I, Ghildina A R, Azyazov V N, Heaven M C 2016 High Energy/Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 97290E
[10] Gao J, Zuo D L, Zhao J, Li B, Yu A L, Wang X B 2016 Opt. Laser Technol. 84 48Google Scholar
[11] Mikheyev P A, Han J D, Clark A, Sanderson C, Heaven M C2017 Production of Ar Metastables in A Dielectric Barrier Discharge (Vol. 10254) (SPIE) 102540X
[12] Han J D, Glebov L, Venus G, Heaven M C 2013 Opt. Lett. 38 5458Google Scholar
[13] Chu J Z, Huang K, Luan K P, Hu S, Zhu F, Huang C, Li G P, Liu J B, Guo J W, Liu D 2021 Chin. J. Lasers 48 0701006Google Scholar
[14] Zhang Z F, Lei P, Zuo D L, Wang X B 2022 Chin. Opt. Lett. 20 031408Google Scholar
[15] Chu J Z, Huang K, Gai B D, Hu S, Liu J B, Chen Y, Liu D, Guo J W 2022 J. Lumines. 247 118839Google Scholar
[16] Wang R, Yang Z N, Tang H, Li L, Zhao H Z, Wang H Y, Xu X J 2022 Opt. Commun. 502 127398Google Scholar
[17] Ghildina A R, Mikheyev P A, Chernyshov A K, Ufimtsev N I, Azyazov V N, Heaven M C 2017 Pressure Broadening Coefficients for the 811.5 nm Ar Line and 811.3 nm Kr Line in Rare Gases (Vol. 10254) (SPIE) 102540Y
[18] Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627Google Scholar
[19] Wang R, Yang Z N, Li K, Wang H Y, Xu X J 2022 J. Appl. Phys. 131 023104Google Scholar
[20] Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2022) https://physics.nist.gov/asd/ [2023-6-8
[21] Lei P, Zhang Z F, Wang X B, Zuo D L 2022 Opt. Commun. 513 128116Google Scholar
[22] Belostotskiy S G, Donnelly V M, Economou D J, Sadeghi N 2009 IEEE Trans. Plasma Sci. 37 852Google Scholar
[23] Miura N, Hopwood J 2011 J. Appl. Phys. 109 013304Google Scholar
[24] Sun P, Zuo D, Wang X, Han J D, Heaven M C 2020 Opt. Express 28 14580Google Scholar
-
图 3 760.2 nm光谱诊断结果 (a) 100 mbar, 1% Kr/Ar/He混合气体不同Ar含量的放电等离子体放射光谱; (b) 不同气压760.2 nm谱线峰值随Ar含量的变化
Figure 3. Spectral diagnosis results at 760.2 nm: (a) Emission spectra of discharge plasma with different Ar content in 100 mbar, 1% Kr/Ar/He gas mixture; (b) variation of the peak value of 760.2 nm spectral line with Ar content at different pressure.
图 4 819.0 nm光谱诊断结果 (a) 100 mbar, 1% Kr/Ar/He混合气体不同Ar含量的放电等离子体放射光谱; (b) 不同气压819.0 nm谱线峰值随Ar含量的变化
Figure 4. Diagnosis Results of 819.0 nm spectra: (a) Emission spectra of discharge plasma with different Ar content in 100 mbar, 1% Kr/Ar/He gas mixture; (b) variation of the peak value of 819.0 nm spectral line with Ar content at different pressure.
图 7 (a) 100—200 mbar, 1% Kr/He混合气中不同Ar含量对Kr*密度影响; (b) 100—200 mbar, 1% Kr/He混合气中不同Ar含量对Kr亚稳态能级吸收线宽影响; (c) 100 mbar, 1% Kr和2% Kr含量时, Kr*粒子数密度和吸收线宽对比
Figure 7. (a) Effect of Ar content in 1% Kr/He mixture on Kr* density at 100–200 mbar; (b) effect of different Ar content in 100–200 mbar, 1% Kr/He mixture on the absorption linewidth of Kr metastable energy level; (c) comparison of Kr* particle number density and absorption line width at 100 mbar, 1% Kr and 2% Kr content.
-
[1] Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron. P. 58 0700003Google Scholar
[2] Krupke W F 2012 Prog. Quantum Electron. 36 4Google Scholar
[3] Pitz G A, Stalnaker D M, Guild E M, Oliker B Q, Moran P J, Townsend S W, Hostutler D A 2016 High Energy/ Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 972902
[4] 齐予, 易亨瑜, 黄吉金, 匡艳 2021 激光与光电子学进展 58 46
Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron P. 58 46
[5] Han J D, Heaven M C 2012 Opt. Lett. 37 2157Google Scholar
[6] Kim H, Hopwood J 2019 J. Appl. Phys. 126 163301Google Scholar
[7] Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A, Azyazov V N 2015 J. Quant. Spectrosc. Radiat. Transf. 164 1Google Scholar
[8] Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A 2015 Tunable Diode-laser Spectroscopy (TDLS) of 811.5 nm Ar Line for Ar(4s[3/2]2) Number Density Measurements in a 40 MHz RF Discharge (Vol. 9255) (SPIE) 92552W
[9] Mikheyev P A, Chernyshov A K, Ufimtsev N I, Ghildina A R, Azyazov V N, Heaven M C 2016 High Energy/Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 97290E
[10] Gao J, Zuo D L, Zhao J, Li B, Yu A L, Wang X B 2016 Opt. Laser Technol. 84 48Google Scholar
[11] Mikheyev P A, Han J D, Clark A, Sanderson C, Heaven M C2017 Production of Ar Metastables in A Dielectric Barrier Discharge (Vol. 10254) (SPIE) 102540X
[12] Han J D, Glebov L, Venus G, Heaven M C 2013 Opt. Lett. 38 5458Google Scholar
[13] Chu J Z, Huang K, Luan K P, Hu S, Zhu F, Huang C, Li G P, Liu J B, Guo J W, Liu D 2021 Chin. J. Lasers 48 0701006Google Scholar
[14] Zhang Z F, Lei P, Zuo D L, Wang X B 2022 Chin. Opt. Lett. 20 031408Google Scholar
[15] Chu J Z, Huang K, Gai B D, Hu S, Liu J B, Chen Y, Liu D, Guo J W 2022 J. Lumines. 247 118839Google Scholar
[16] Wang R, Yang Z N, Tang H, Li L, Zhao H Z, Wang H Y, Xu X J 2022 Opt. Commun. 502 127398Google Scholar
[17] Ghildina A R, Mikheyev P A, Chernyshov A K, Ufimtsev N I, Azyazov V N, Heaven M C 2017 Pressure Broadening Coefficients for the 811.5 nm Ar Line and 811.3 nm Kr Line in Rare Gases (Vol. 10254) (SPIE) 102540Y
[18] Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627Google Scholar
[19] Wang R, Yang Z N, Li K, Wang H Y, Xu X J 2022 J. Appl. Phys. 131 023104Google Scholar
[20] Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2022) https://physics.nist.gov/asd/ [2023-6-8
[21] Lei P, Zhang Z F, Wang X B, Zuo D L 2022 Opt. Commun. 513 128116Google Scholar
[22] Belostotskiy S G, Donnelly V M, Economou D J, Sadeghi N 2009 IEEE Trans. Plasma Sci. 37 852Google Scholar
[23] Miura N, Hopwood J 2011 J. Appl. Phys. 109 013304Google Scholar
[24] Sun P, Zuo D, Wang X, Han J D, Heaven M C 2020 Opt. Express 28 14580Google Scholar
Catalog
Metrics
- Abstract views: 2657
- PDF Downloads: 60
- Cited By: 0