Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth mechanism, phase transition and optical properties of large-size and high-quality perovskite CH3NH3PbCl3 single crystal

Nan Rui-Hua Wu Chun-Yan Liu Teng Luo Jia-Xin Wei Yong-Xing Jian Zeng-Yun

Citation:

Growth mechanism, phase transition and optical properties of large-size and high-quality perovskite CH3NH3PbCl3 single crystal

Nan Rui-Hua, Wu Chun-Yan, Liu Teng, Luo Jia-Xin, Wei Yong-Xing, Jian Zeng-Yun
PDF
HTML
Get Citation
  • According to the phenomenon that the solubility of CH3NH3PbCl3 decreases with the increase of temperature in different solvents, CH3NH3PbCl3 perovskite single crystal with a maximum dimension of 11 mm × 11 mm × 2 mm is grown by introducing a high-quality seed crystal via the seed-induced inverse temperature crystallization method in this work. X-ray diffraction and Rietveld refinements show that the full widths at half maximum (FWHM) of CH3NH3PbCl3 single crystal diffraction peaks are 0.1527°, 0.1353°, 0.2295° and 0.3452°, corresponding to the crystal plane indices of (100), (200), (300) and (400), respectively. And there are no miscellaneous peaks, indicating a good crystal quality. As a result, CH3NH3PbCl3 single crystal is of cubic phase at room temperature, its space group belongs to Pm$ \bar{3} $m, and the lattice constant is a = 0.56877 nm. The surface morphology and growth mechanism of CH3NH3PbCl3 crystal are investigated by using a polarizing microscope. It is found that its growth mechanism follows the step horizontal growing mechanism of smooth interface, and its growth direction (that is, step movement direction) is along the outward normal direction of the step. The structural symmetry of CH3NH3PbCl3 crystal is studied by variable temperature Raman spectroscopy, which reveals an orthogonal-tetragonal phase transition at 160 K. But the tetragonal phase structure is not stable, and its temperature range is very narrow. As temperature rises gradually, the tetragonal phase again transforms into a cubic phase (Pm$\bar{3}$m). Results of UV-Vis-NIR absorption and photoluminescence spectra show that the absorption cutoff of CH3NH3PbCl3 crystal is about 442 nm, and the photoluminescence peak is 450 nm. Thereupon, its band gap is obtained to be about 2.93 eV by a linear fit of Tauc formula, which is slightly higher than the theoretical value of 2.55 eV calculated by first principles simulation. We believe that it is related to the seed crystal, which is introduced into the crystal growth process as the core of heterogeneous nucleation and thus making the lattice more distorted. The lower the lattice symmetry of CH3NH3PbCl3, the larger the band gap is, that is, the lattice symmetry determines the degree of distortion for inorganic PbCl6 octahedral frameworks, resulting in an increase of band gap for CH3NH3PbCl3.
      Corresponding author: Nan Rui-Hua, nanrh@xatu.edu.cn
    • Funds: Project supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2022JM212).
    [1]

    Turedi B, Lintangpradipto M N, Sandberg O J, Yazmaciyan A, Matt G J, Alsalloum A Y, Almasabi K, Sakhatskyi K, Yakunin S, Zheng X, Naphade R, Nematulloev S, Yeddu V, Baran D, Armin A, Saidaminov M I, Kovalenko M V, Mohammed O F, Bakr O M 2022 Adv. Mater. 34 2202390Google Scholar

    [2]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [3]

    Wang S, Yang F, Zhu J, Cao Q, Zhong Y, Wang A, Du W, Liu X 2020 Sci. China Mater. 63 1438Google Scholar

    [4]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [5]

    Zhang Y, Liu Y, Liu S 2022 Adv. Funct. Mater. 32 2210335Google Scholar

    [6]

    Chen H, Ye F, Tang W, He J, Yin M, Wang Y, Xie F, Bi E, Yang X, Grätzel M, Han L 2017 Nature 550 92Google Scholar

    [7]

    Li M, Zhao C, Wang Z, Zhang C, Lee H K H, Pockett A, Barbé J, Tsoi W C, Yang Y, Carnie M J, Gao X, Yang W, Durrant J R, Liao L, Jain S M 2018 Adv. Energy Mater. 8 1801509Google Scholar

    [8]

    Wang Y, Chen W, Wang L, Tu B, Chen T, Liu B, Yang K, Koh C W, Zhang X, Sun H, Chen G, Feng X, Woo H Y, Djurišic´ A B, He Z, Guo X 2019 Adv. Mater. 31 1902781Google Scholar

    [9]

    Quan L N, García de Arquer F P, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [10]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [11]

    Zhang Q, Su R, Liu X, Xing J, Sum T C, Xiong Q 2016 Adv. Funct. Mater. 26 6238Google Scholar

    [12]

    Wang K, Wang S, Xiao S, Song Q 2018 Adv. Optical Mater. 6 1800278Google Scholar

    [13]

    Li D, Cheng H, Wang Y, Zhao Z, Wang G, Wu H, He Q, Huang Y, Duan X 2017 Adv. Mater. 29 1601959Google Scholar

    [14]

    Yu W, Li F, Yu L, Niazi M R, Zou Y, Corzo D, Basu A, Ma C, Dey S, Tietze M L, Buttner U, Wang X, Wang Z, Hedhili M N, Guo C, Wu T, Amassian A 2018 Nat. Commun. 9 5354Google Scholar

    [15]

    Tian W, Zhou H, Li L 2017 Small 13 1702107Google Scholar

    [16]

    Pan W, Wei H, Yang B 2020 Front. Chem. 8 268Google Scholar

    [17]

    Andričević P, Frajtag P, Lamirand V P, Pautz A, Kollár M, Náfrádi B, Sienkiewicz A, Garma T, Forró L, Horváth E 2021 Adv. Sci. 8 2001882Google Scholar

    [18]

    Ma L, Yan Z, Zhou X, Pi Y, Du Y, Huang J, Wang K, Wu K, Zhuang C, Han X 2021 Nat. Commun. 12 2023Google Scholar

    [19]

    Shen H, Nan R, Jian Z, Li X 2019 J. Mater. Sci. 54 11596Google Scholar

    [20]

    Wang W, Meng H, Qi H, Xu H, Du W, Yang Y, Yi Y, Jing S, Xu S, Hong F, Qin J, Huang J, Xu Z, Zhu Y, Xu R, Lai J, Xu F, Wang L, Zhu J 2020 Adv. Mater. 32 2001540Google Scholar

    [21]

    Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seoa J, Seok S I 2014 Energy Environ. Sci. 7 2614Google Scholar

    [22]

    Cheng X, Jing L, Zhao Y, Du S, Ding J, Zhou T 2018 J. Mater. Chem. C 6 1579Google Scholar

    [23]

    Zheng E, Yuh B, Tosado G A, Yu Q 2017 J. Mater. Chem. C 5 3796Google Scholar

    [24]

    Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, Yu F, Zhang X, Zhao C, Liu S 2015 Adv. Mater. 27 5176Google Scholar

    [25]

    Ding J, Cheng X, Jing L, Zhou T, Zhao Y, Du S 2018 ACS Appl. Mater. Interfaces 10 845Google Scholar

    [26]

    Mosconi E, Amat A, Nazeeruddin M K, Grätzel M, Angelis F D 2013 J. Phys. Chem. C 117 13902Google Scholar

    [27]

    Zhang F, Zhong H, Chen C, Wu X, Hu X, Huang H, Han J, Zou B, Dong Y 2015 ACS Nano 9 4533Google Scholar

    [28]

    Bernasconi A, Page K, Dai Z, Tan L Z, Rappe A M, Malavasi L 2018 J. Phys. Chem. C 122 28265Google Scholar

    [29]

    Songvilay M, Wang Z, Sakai V G, Guidi T, Bari M, Ye Z G, Xu G, Brown K L, Gehring P M, Stock C 2019 Phys. Rev. Mater. 3 125406Google Scholar

    [30]

    Ivanovska T, Quarti C, Grancini G, Petrozza A, Angelis F D, Milani A, Ruani G 2016 Chem. Sus. Chem 9 2994Google Scholar

    [31]

    Wang H, Nan R, Jian Z, Jin C, Wei Y, Bai Y, Li H 2021 Mater. Sci. Semicond. Process. 135 106107Google Scholar

    [32]

    Singleton J, Rabe K M 2002 Phys. Today 55 61Google Scholar

  • 图 1  籽晶诱导逆温差结晶法生长CH3NH3PbCl3单晶 (a)原理示意图; (b) CH3NH3PbCl3在DMF和DMSO混合溶剂中的溶解度曲线

    Figure 1.  CH3NH3PbCl3 single crystal grown by seed-induced inverse temperature crystallization method: (a) Schematic diagram of principle; (b) temperature-dependent solubility curve of CH3NH3PbCl3 in DMF+DMSO mixed solution.

    图 2  CH3NH3PbCl3单晶生长 (a)单晶生长温度工艺曲线; (b)单晶宏观形貌图(尺寸为11 mm × 11 mm × 2 mm)

    Figure 2.  CH3NH3PbCl3 single crystal growth: (a) Temperature control curve of single crystal growth; (b) macroscopic morphology of single crystal (Size: 11 mm × 11 mm × 2 mm).

    图 3  籽晶诱导逆温差结晶法生长CH3NH3PbCl3单晶 (a) 单晶XRD图谱; (b)粉末XRD与Material studio模拟的标准XRD图谱; (c) 粉末XRD Rietveld精修结果(Rp = 12.6%, Rwp = 18.5%)

    Figure 3.  CH3NH3PbCl3 single crystal grown by seed-induced inverse temperature crystallization method: (a) XRD pattern of single crystal; (b) powder XRD and standard XRD pattern simulated by Material studio; (c) Rietveld result of powder XRD pattern (Rp = 12.6%, Rwp = 18.5%).

    图 4  CH3NH3PbCl3单晶的偏光显微形貌图 (a)单晶整体; (b)单晶局部放大图

    Figure 4.  Polarizing micromorphology of CH3NH3PbCl3 single crystal: (a) Whole crystal; (b) partial magnification of single crystal.

    图 5  (a) CH3NH3PbCl3单晶的UV-Vis-NIR吸收光谱和PL光谱; (b) 通过拟合得到的帯隙值(蓝色散点是实验数据, 黑色实线是拟合结果Eg = 2.93 eV)

    Figure 5.  (a) UV-Vis-NIR absorption and PL spectra of CH3NH3PbCl3 single crystal; (b) band gap obtained by fitting (Blue scatter dots are the experimental data, and the black solid line is the fitting result of Eg = 2.93 eV).

    图 6  CH3NH3PbCl3单晶的变温拉曼光谱 (a), (b) 80—300 K; (c), (d) 150—170 K; (e) 158 K; (f) 160 K; (g) 不同温度下CH3NH3PbCl3晶体结构(立方/四方/正交)的拉曼谱

    Figure 6.  Temperature-dependent Raman spectra of CH3NH3PbCl3 single crystal: (a), (b) 80–300 K; (c), (d) 150–170 K; (e) 158 K; (f) 160 K; (g) Raman spectra of CH3NH3PbCl3 crystal structures (cubic/tetragonal/orthogonal) at different temperatures.

    图 7  第一性原理计算CH3NH3PbCl3的能带结构和态密度(a) 能带图谱; (b) 总态密度图; (c) 分波态密度图

    Figure 7.  Energy band structure and DOS for CH3NH3PbCl3 calculated by first-principles simulation: (a) Energy band structure diagram; (b) total DOS diagram; (c) partial DOS diagram.

    Baidu
  • [1]

    Turedi B, Lintangpradipto M N, Sandberg O J, Yazmaciyan A, Matt G J, Alsalloum A Y, Almasabi K, Sakhatskyi K, Yakunin S, Zheng X, Naphade R, Nematulloev S, Yeddu V, Baran D, Armin A, Saidaminov M I, Kovalenko M V, Mohammed O F, Bakr O M 2022 Adv. Mater. 34 2202390Google Scholar

    [2]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [3]

    Wang S, Yang F, Zhu J, Cao Q, Zhong Y, Wang A, Du W, Liu X 2020 Sci. China Mater. 63 1438Google Scholar

    [4]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [5]

    Zhang Y, Liu Y, Liu S 2022 Adv. Funct. Mater. 32 2210335Google Scholar

    [6]

    Chen H, Ye F, Tang W, He J, Yin M, Wang Y, Xie F, Bi E, Yang X, Grätzel M, Han L 2017 Nature 550 92Google Scholar

    [7]

    Li M, Zhao C, Wang Z, Zhang C, Lee H K H, Pockett A, Barbé J, Tsoi W C, Yang Y, Carnie M J, Gao X, Yang W, Durrant J R, Liao L, Jain S M 2018 Adv. Energy Mater. 8 1801509Google Scholar

    [8]

    Wang Y, Chen W, Wang L, Tu B, Chen T, Liu B, Yang K, Koh C W, Zhang X, Sun H, Chen G, Feng X, Woo H Y, Djurišic´ A B, He Z, Guo X 2019 Adv. Mater. 31 1902781Google Scholar

    [9]

    Quan L N, García de Arquer F P, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [10]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [11]

    Zhang Q, Su R, Liu X, Xing J, Sum T C, Xiong Q 2016 Adv. Funct. Mater. 26 6238Google Scholar

    [12]

    Wang K, Wang S, Xiao S, Song Q 2018 Adv. Optical Mater. 6 1800278Google Scholar

    [13]

    Li D, Cheng H, Wang Y, Zhao Z, Wang G, Wu H, He Q, Huang Y, Duan X 2017 Adv. Mater. 29 1601959Google Scholar

    [14]

    Yu W, Li F, Yu L, Niazi M R, Zou Y, Corzo D, Basu A, Ma C, Dey S, Tietze M L, Buttner U, Wang X, Wang Z, Hedhili M N, Guo C, Wu T, Amassian A 2018 Nat. Commun. 9 5354Google Scholar

    [15]

    Tian W, Zhou H, Li L 2017 Small 13 1702107Google Scholar

    [16]

    Pan W, Wei H, Yang B 2020 Front. Chem. 8 268Google Scholar

    [17]

    Andričević P, Frajtag P, Lamirand V P, Pautz A, Kollár M, Náfrádi B, Sienkiewicz A, Garma T, Forró L, Horváth E 2021 Adv. Sci. 8 2001882Google Scholar

    [18]

    Ma L, Yan Z, Zhou X, Pi Y, Du Y, Huang J, Wang K, Wu K, Zhuang C, Han X 2021 Nat. Commun. 12 2023Google Scholar

    [19]

    Shen H, Nan R, Jian Z, Li X 2019 J. Mater. Sci. 54 11596Google Scholar

    [20]

    Wang W, Meng H, Qi H, Xu H, Du W, Yang Y, Yi Y, Jing S, Xu S, Hong F, Qin J, Huang J, Xu Z, Zhu Y, Xu R, Lai J, Xu F, Wang L, Zhu J 2020 Adv. Mater. 32 2001540Google Scholar

    [21]

    Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seoa J, Seok S I 2014 Energy Environ. Sci. 7 2614Google Scholar

    [22]

    Cheng X, Jing L, Zhao Y, Du S, Ding J, Zhou T 2018 J. Mater. Chem. C 6 1579Google Scholar

    [23]

    Zheng E, Yuh B, Tosado G A, Yu Q 2017 J. Mater. Chem. C 5 3796Google Scholar

    [24]

    Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, Yu F, Zhang X, Zhao C, Liu S 2015 Adv. Mater. 27 5176Google Scholar

    [25]

    Ding J, Cheng X, Jing L, Zhou T, Zhao Y, Du S 2018 ACS Appl. Mater. Interfaces 10 845Google Scholar

    [26]

    Mosconi E, Amat A, Nazeeruddin M K, Grätzel M, Angelis F D 2013 J. Phys. Chem. C 117 13902Google Scholar

    [27]

    Zhang F, Zhong H, Chen C, Wu X, Hu X, Huang H, Han J, Zou B, Dong Y 2015 ACS Nano 9 4533Google Scholar

    [28]

    Bernasconi A, Page K, Dai Z, Tan L Z, Rappe A M, Malavasi L 2018 J. Phys. Chem. C 122 28265Google Scholar

    [29]

    Songvilay M, Wang Z, Sakai V G, Guidi T, Bari M, Ye Z G, Xu G, Brown K L, Gehring P M, Stock C 2019 Phys. Rev. Mater. 3 125406Google Scholar

    [30]

    Ivanovska T, Quarti C, Grancini G, Petrozza A, Angelis F D, Milani A, Ruani G 2016 Chem. Sus. Chem 9 2994Google Scholar

    [31]

    Wang H, Nan R, Jian Z, Jin C, Wei Y, Bai Y, Li H 2021 Mater. Sci. Semicond. Process. 135 106107Google Scholar

    [32]

    Singleton J, Rabe K M 2002 Phys. Today 55 61Google Scholar

  • [1] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] Xiao Zhi-Feng, Wang Shou-Yu, Dai Ya-Ting, Kang Xin-Miao, Zhang Zhen-Hua, Liu Wei-Fang. Physical mechanism of Ge doping enhanced Ruddlesden-Popper structure quasi-2D Sr3Sn2O7 ceramic hybrid improper ferroelectricity. Acta Physica Sinica, 2024, 73(14): 147702. doi: 10.7498/aps.73.20240583
    [3] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [4] Lü Cheng-Ye, Chen Ying-Wei, Xie Mu-Ting, Li Xue-Yang, Yu Hong-Yu, Zhong Yang, Xiang Hong-Jun. First-principles calculation method for periodic system under external electromagnetic field. Acta Physica Sinica, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [5] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [6] Ding Li-Jie, Zhang Xiao-Tian, Guo Xin-Yi, Xue Yang, Lin Chang-Qing, Huang Dan. First-principles study of SrSnO3 as transparent conductive oxide. Acta Physica Sinica, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [7] Chen Guang-Ping, Yang Jin-Ni, Qiao Chang-Bing, Huang Lu-Jun, Yu Jing. First-principles calculations of local structure and electronic properties of Er3+-doped TiO2. Acta Physica Sinica, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [8] Wang Qi, Tang Fa-Wei, Hou Chao, Lü Hao, Song Xiao-Yan. First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries. Acta Physica Sinica, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [9] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [10] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [11] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [12] Chen Mei-Na, Zhang Lei, Gao Hui-Ying, Xuan Yan, Ren Jun-Feng, Lin Zi-Jing. DFT+U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte. Acta Physica Sinica, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [13] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [14] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [15] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [16] Ding Hang-Chen, Shi Si-Qi, Jiang Ping, Tang Wei-Hua. First-principles investigation on the phase transitions of BiFeO3. Acta Physica Sinica, 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [17] Zhang Hui, Liu Yong-Jun, Pan Li-Hua, Zhang Yu. First-principles study of Co doped BiFeO3. Acta Physica Sinica, 2009, 58(10): 7141-7146. doi: 10.7498/aps.58.7141
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [20] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
Metrics
  • Abstract views:  3319
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2023
  • Accepted Date:  28 April 2023
  • Available Online:  04 May 2023
  • Published Online:  05 July 2023

/

返回文章
返回
Baidu
map