-
In this work, an 18 MeV self extraction high current cyclotron is designed, which provides a feasible design scheme for the self extraction system. For the main magnet, it is designed by restricting the parameter change of the main magnetic field through “three judgments”. For the self extraction system, the phase space suitable for particle extraction is scanned by injecting the phase space, and the gradient correction magnet is used to increase the acceptance of the extracted beam. For the harmonic coil, through the second harmonic change of the magnetic field, the beam characteristics are analyzed and the position of the harmonic coil is determined. Under the condition of scanning different harmonic coil surface currents, the extraction of the beam is obtained, and then the phase space of the beam is pushed to the acceptance. In order to match the radial dimension and the axial dimension of the target beam and obtain a stronger beam, the magnetic channel of the double structure is selected and the related design idea is given. The final beam size is 30.5 mm × 12.9 mm, the particles that can be extracted account for 82.62% of the successfully accelerated particles.
-
Keywords:
- self-extraction cyclotron /
- magnet design /
- numerical simulation
[1] Strobel K, Haerle S K, Stoeckli S J, Schrank M, Soyka J D, Veit-Haibach P, Hany T F 2009 Eur. J. Nucl. Med. Mol. Imaging 36 919Google Scholar
[2] Osman M M, Cohade C, Nakamoto Y, Wahi R L 2003 Eur. J. Nucl. Med. Mol. Imaging 30 603Google Scholar
[3] Hermannea A, Adam-Rebelesa R, Tárkányib F, Takácsb F, Ditróib S 2015 Nucl. Instrum Methods Phys. Res., Sect. B 359 145
[4] 樊明武 2000 中国工程科学 2 9Google Scholar
Fan M W 2000 Eng. Sci. 2 9Google Scholar
[5] Zhang T J, Lu Y L, Yin Z G, Zhong J Q, Cui T, Li M, Wei S M, Song G F, Wu L C, Ji B, Xing J S, Qin J C, Jia X L, Hu W P, Yang J J, An S Z, Guan F P, Zhen X, Wen L P, Lin J, Li Z G, Zhang X Z, Cai Y X, Yang F 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 269 2950
[6] Zhang T J, Zhong J Q, Lu Y L, Cui T, Qin J C, Xing J S, Li M, Yang J J, Pan G F, Yang F 2012 IEEE Trans. Appl. Supercond. 22 4101004Google Scholar
[7] Zhang T J, Chu C J, Zhong J Q, Yang J J, Xing J S, Lu Y L, Wei S M, Chen R F, Li Z G, Fan M W 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 25Google Scholar
[8] Zhang T J, Li Z G, Chu C J 2007 The 18th International Conference on Cyclotrons and Their Applications Giardini Naxos, October 1–5, 2007 p33
[9] Kleeven W, Abs M, Amelia J C, Zaremba S 2000 Proceedings of EPAC Vienna, June 26–30, 2000 p2530
[10] Kleeven W, Lucas S, Delvaux J L, Swoboda F, Zaremba S, Beeckman W, Vandeplassche D, Abs M, Jongen Y 2003 33rd European Cyclotron Progress Meeting Warsaw, September 17–21, 2003 p115
[11] 王义芳, 王兵, 李炳生 2006 高能物理与核物理 30 147
Wang Y F, Wang B, Li B S 2006 High Energy Physics and Nuclear Physics 30 147
[12] 张锦明, 田嘉禾 2006 同位素 19 240Google Scholar
Zhang J M, Tian J H 2006 J. Isot. 19 240Google Scholar
[13] 何小中, 杨国君, 龙继东, 李伟峰, 杨兴林, 李成刚, 荆晓兵, 王敏鸿, 李洪, 李勤, 张开志 2009 全国核技术及应用研究学术研讨会 绵阳, 10月 2009 p827
He X Z, Yang G J, Long J D, Li W F, Yang X L, Li C G, Jing X B, Wang M H, Li H, Li Q, Zhang K Z 2009 National Symposium on Nuclear Technology and Applied Research 2008 MianYang, October, 2009 p827 (in Chinese)
[14] 张罡, 何小中, 杜洋, 石金水, 杨国君 2022 强激光与粒子束 34 074002Google Scholar
Zhang G, He X Z, Du Y, Shi J S, Yang G J 2022 High Power Laser and Particle Bezhams 34 074002Google Scholar
[15] Poole C M, Cornelius I, Trapp J V, Langton C M 2012 IEEE Trans. Nucl. Sci. 59 1695Google Scholar
[16] Agostinelli S, Allison J, Amako K, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar
[17] Karamyshev O, Karamysheva T, Lyapin I, Malinin V, Popov D 2021 Phys. Part. Nucl. Lett. 18 481Google Scholar
[18] Gordon M M 1984 Part. Accel. 16 39
[19] Kleeven W, Hagedoorn H 1992 The 13International Conference on Cyclotrons and Their Applications, Vancouver, BC, Canada, July 6–10, 1992 p380
[20] 唐靖宇, 魏宝文 2008 回旋加速器理论与设计 (合肥: 中国科学技术大学出版社) 第164, 165页
Tang J Y, Wei B W 2008 Theory and Design of Cyclotrons (Hefei: China University of science and Technology Press) pp164, 165 (in Chinese)
[21] Fermé J, Gendreau G, Yvon P 1975 Proceedings of the 7th International Conference on Cyclotrons and their Applications Zürich, Switzerland, August 19–22, 1975 p260
[22] Borland M 2000 The 6th International Computational Accelerator Physics Conference Florence, June 4–9, 2000 p1
-
图 11 不同电流情况下粒子半径变化 (a) 不同面电流谐波线圈对粒子的推送作用; (b) 表示不同面电流下谐波线圈的幅值变化; (c) 谐波线圈模型
Figure 11. Variations of particle radius under different current conditions: (a) Pushing effect of harmonic coil with different surface current on particles; (b) amplitude variation of harmonic coil under different surface current; (c) harmonic coil mode.
表 1 离子源初始信息
Table 1. Initial information of ion source
初始信息 离子源 Insert direction transverse Slit area/mm2 18 Slit height/mm 2 Extraction energy/eV ~3 -
[1] Strobel K, Haerle S K, Stoeckli S J, Schrank M, Soyka J D, Veit-Haibach P, Hany T F 2009 Eur. J. Nucl. Med. Mol. Imaging 36 919Google Scholar
[2] Osman M M, Cohade C, Nakamoto Y, Wahi R L 2003 Eur. J. Nucl. Med. Mol. Imaging 30 603Google Scholar
[3] Hermannea A, Adam-Rebelesa R, Tárkányib F, Takácsb F, Ditróib S 2015 Nucl. Instrum Methods Phys. Res., Sect. B 359 145
[4] 樊明武 2000 中国工程科学 2 9Google Scholar
Fan M W 2000 Eng. Sci. 2 9Google Scholar
[5] Zhang T J, Lu Y L, Yin Z G, Zhong J Q, Cui T, Li M, Wei S M, Song G F, Wu L C, Ji B, Xing J S, Qin J C, Jia X L, Hu W P, Yang J J, An S Z, Guan F P, Zhen X, Wen L P, Lin J, Li Z G, Zhang X Z, Cai Y X, Yang F 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 269 2950
[6] Zhang T J, Zhong J Q, Lu Y L, Cui T, Qin J C, Xing J S, Li M, Yang J J, Pan G F, Yang F 2012 IEEE Trans. Appl. Supercond. 22 4101004Google Scholar
[7] Zhang T J, Chu C J, Zhong J Q, Yang J J, Xing J S, Lu Y L, Wei S M, Chen R F, Li Z G, Fan M W 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 25Google Scholar
[8] Zhang T J, Li Z G, Chu C J 2007 The 18th International Conference on Cyclotrons and Their Applications Giardini Naxos, October 1–5, 2007 p33
[9] Kleeven W, Abs M, Amelia J C, Zaremba S 2000 Proceedings of EPAC Vienna, June 26–30, 2000 p2530
[10] Kleeven W, Lucas S, Delvaux J L, Swoboda F, Zaremba S, Beeckman W, Vandeplassche D, Abs M, Jongen Y 2003 33rd European Cyclotron Progress Meeting Warsaw, September 17–21, 2003 p115
[11] 王义芳, 王兵, 李炳生 2006 高能物理与核物理 30 147
Wang Y F, Wang B, Li B S 2006 High Energy Physics and Nuclear Physics 30 147
[12] 张锦明, 田嘉禾 2006 同位素 19 240Google Scholar
Zhang J M, Tian J H 2006 J. Isot. 19 240Google Scholar
[13] 何小中, 杨国君, 龙继东, 李伟峰, 杨兴林, 李成刚, 荆晓兵, 王敏鸿, 李洪, 李勤, 张开志 2009 全国核技术及应用研究学术研讨会 绵阳, 10月 2009 p827
He X Z, Yang G J, Long J D, Li W F, Yang X L, Li C G, Jing X B, Wang M H, Li H, Li Q, Zhang K Z 2009 National Symposium on Nuclear Technology and Applied Research 2008 MianYang, October, 2009 p827 (in Chinese)
[14] 张罡, 何小中, 杜洋, 石金水, 杨国君 2022 强激光与粒子束 34 074002Google Scholar
Zhang G, He X Z, Du Y, Shi J S, Yang G J 2022 High Power Laser and Particle Bezhams 34 074002Google Scholar
[15] Poole C M, Cornelius I, Trapp J V, Langton C M 2012 IEEE Trans. Nucl. Sci. 59 1695Google Scholar
[16] Agostinelli S, Allison J, Amako K, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar
[17] Karamyshev O, Karamysheva T, Lyapin I, Malinin V, Popov D 2021 Phys. Part. Nucl. Lett. 18 481Google Scholar
[18] Gordon M M 1984 Part. Accel. 16 39
[19] Kleeven W, Hagedoorn H 1992 The 13International Conference on Cyclotrons and Their Applications, Vancouver, BC, Canada, July 6–10, 1992 p380
[20] 唐靖宇, 魏宝文 2008 回旋加速器理论与设计 (合肥: 中国科学技术大学出版社) 第164, 165页
Tang J Y, Wei B W 2008 Theory and Design of Cyclotrons (Hefei: China University of science and Technology Press) pp164, 165 (in Chinese)
[21] Fermé J, Gendreau G, Yvon P 1975 Proceedings of the 7th International Conference on Cyclotrons and their Applications Zürich, Switzerland, August 19–22, 1975 p260
[22] Borland M 2000 The 6th International Computational Accelerator Physics Conference Florence, June 4–9, 2000 p1
Catalog
Metrics
- Abstract views: 4077
- PDF Downloads: 70
- Cited By: 0