-
Combined with the Dirac semimetals (DSMs), which is a new type of material and also called as 3D graphene, a tunable wideband terahertz polarization conversion metasurface based on an anisotropic configuration is studied, in which the DSMs wire array is beneficial to the regulation of Fermi energy. The results show that the metasurface can realize wideband and highly efficient polarization conversion, and has the property of half wave plate at the resonant modes. This characteristics are derived from the excitation of Localized Surface Plasmon Resonances (LSPRs) and the anisotropy of structure itself. When the incident angle changes in the range of 0°~40°, the high efficiency of wideband polarization conversion can be maintained. When it is greater than 40°, the wideband polarization conversion gradually changes to the dual-band or the multi-band conversion. Furthermore, it is found that in the process of increasing the Fermi energy of AlCuFe from 65 meV to 140 meV, the polarization conversion ratio can be maintained at a high level, and the conversion performance changes from single-band conversion to wideband conversion, and then to wideband conversion with wider band and single-band conversion with narrower band. At the same time, by discussing the metasurface combined with the different DSMs, it is concluded that the better the metallic property of DSMs is, the better the wideband polarization conversion performance of the corresponding metasurface is. At last, the numerical results are verified by the Multiple Interference Theory (MIT) based on the Fabry-Pérot-like resonance cavity.
-
Keywords:
- Terahertz tunable metasurface /
- Dirac semimetals /
- Wideband polarization conversion /
- Multiple interference theory
-
[1] Gruev V, Perkins R, York T 2010 Opt. Express 18 19087
[2] Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565
[3] Beruete M, Navarro-Cía M, Sorolla M, Campillo I 2008 J. Appl. Phys. 103 053102
[4] Liu S, Zhang P, Liu W, Gong S, Zhong R, Zhang Y, Hu M 2012 Phys. Rev. Lett. 109 153902
[5] Takagi K, Nair S V, Watanabe R, Seto K, Kobayashi T, Tokunaga E 2017 J. Phys. Soc. Jpn. 86 124721
[6] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749
[7] Li Q, Tian Z, Zhang X, Singh R, Du L, Gu J, Han J, Zhang W 2015 Nat. Commun. 6 7082
[8] Huang W, Liang S J, Kyoseva E, Ang L K 2018 Carbon 127 187
[9] Huang W, Yin S, Zhang W, Wang K, Zhang Y, Han J 2019 New J. Phys. 21 113004
[10] Feng Y, Cao L, Zhang Y 2021 IEEE J. Sel. Top. Quantum Electron. 27 8500205
[11] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603
[12] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677
[13] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864
[14] Meng W L, Hou B Y, Cao Q H, Lin H M, Zhou W, Li Z X, Li D H 2020 Microw. Opt. Technol. Lett. 1
[15] Dai L L, Zhang Y P, Zhang H Y, O’Hara J F 2019 Appl. Phys. Express 12 075003
[16] Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D, Zhang H Y 2018 Opt. Mater. Express 8 3238
[17] Dai L L, Zhang Y P, Zhang Y L, Liu S D, Zhang H Y 2020 Opt. Commun. 468 125802
[18] Zhang Y P, Tian Y S, Zhang Y L, Dai L L, Liu S D, Zhang Y, Zhang H Y 2020 Opt. Commun. 477 126348
[19] Yang C H, Gao Q G, Dai L L, Zhang Y L, Zhang H Y, Zhang Y P 2020 Opt. Mater. Express 10 2289
[20] Jia D L, Xu J, Yu X M 2018 Opt. Express 26 26227
[21] Seo M A, Park H R, Koo S M, Park D J, Kang J H, Suwal O K, Choi S S, Planken P C M, Park G S, Park N K, Park Q H, Kim D S 2009 Nat. Photonics 3 152
[22] Liu D J, Xiao Z Y, Ma X L, Xu K K, Tang J Y, Wang Z H 2016 Wave Motion 66 1
[23] Xu K K, Xiao Z Y, Tang J Y 2017 Plasmonics 12 1869
[24] Zhong R B, Yang L, Liang Z K, Wu Z H, Wang Y Q, Ma A C, Fang Z, Liu S G 2020 Opt. Express 28 28773
[25] Wang Y, Wang Y, Li Q Y, Zhang Y, Yan S Y, Wang C H 2021 Opt. Express 29 26865
[26] Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417-1
[27] Wang Y Q, Yi Y T, Xu D Y, Yi Z, Li Z Y, Chen X F, Jile H, Zhang J G, Zeng L C, Li G F 2021 Physica E 131 114750
[28] Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471
[29] Luo J, Lin Q, Wang L L, Xia S X, Meng H Y, Zhai X 2019 Opt. Express 27 20165
[30] Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Chen J H, Li H J, Wang L L 2019 Opt. Express 27 31062
[31] Timusk T, Carbotte J P, Homes C C, Basov D N, Sharapov S G 2013 Phys. Rev. B 87 235121-1
[32] Zheng X X, Xiao Z Y, Ling X Y 2016 Opt. Quant. Electron. 48 461
[33] Zhang H J, Liu Y, Liu Z Q, Liu X S, Liu G Q, Fu G L, Wang J Q, Shen Y 2021 Opt. Express 29 70
[34] Lin R, Lu F K, He X L, Jiang Z L, Liu C, Wang S Y, Kong Y 2021 Opt. Express 29 30357
[35] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908-1
[36] Li F X, Zhang L B, Zhou P H, Chen H Y, Zhao R, Zhou Y, Liang D F, Lu H P, Deng L J 2018 Appl. Phys. B 124 28
[37] Gandhi C, Babu P R, Senthilnathan K 2019 J. Infrared Milli. Terahz. Waves 40 500
[38] Gao X, Singh L, Yang W L, Zheng J J, Li H O, Zhang W L 2017 Sci. Rep. 7 6817
[39] Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616
[40] Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522
[41] Zhang J G, Tian J P, Li L 2018 IEEE Photon. J 10 4800512
[42] Meng W W, Que L C, Lv J, Zhang L W, Zhou Y, Jiang Y D 2019 Results Phys. 14 102461
[43] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304
[44] Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. Express 8 597
[45] Zhang J G, Tian J P, Xiao S Y, Li L 2020 IEEE Access 8 46505
Metrics
- Abstract views: 2752
- PDF Downloads: 92
- Cited By: 0