-
Ag2ZnSnSe4 is an n-type semiconductor with a suitable bandgap of 1.4 eV. In the present study, a graphene/Ag2ZnSnSe4 induced p-n junction thin film solar cell is proposed and the physical mechanism and performance influencing factors of the solar cell are simulated and analyzed by using the wxAMPS software. The simulation results show that when a high work function graphene contacts an n-type Ag2ZnSnSe4 semiconductor, the energy band of the Ag2ZnSnSe4 absorber layer bends upward, meanwhile a p-type Ag2ZnSnSe4 inversion layer is induced on the surface of n-type Ag2ZnSnSe4, therefore the p-type Ag2ZnSnSe4 and n-type Ag2ZnSnSe4 form an induced p-n homojunction. It is found that the work function of graphene and back contact significantly influence the photogenerated carrier separation, transportation and collection. The graphene work function should be 5.5 eV and the work function of back contact should not be greater than 4.4 eV, which is beneficial to the improving of the device performance. The doping concentration of Ag2ZnSnSe4 absorber mainly affects the short-circuit current of the device, however, the defect density of Ag2ZnSnSe4 absorber affects the whole device performance. When the work function of graphene and back contact are 5.5 eV and 3.8 eV, the doping concentration and defect density of Ag2ZnSnSe4 absorber are 1016 cm–3 and 1014 cm–33, respectively, the conversion efficiency of the graphene/Ag2ZnSnSe4 induced p-n junction thin film solar cell can reach 23.42%. These simulation results provide the idea and physical explanation for designing a novel type of solar cell with high efficiency and low cost.
-
Keywords:
- graphene /
- Ag2ZnSnSe4 /
- induced p-n junction /
- thin film solar cell
[1] Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W C, Goodrich A, Noufi R 2012 Sol. Energy Mater. Sol.Cells 101 154Google Scholar
[2] Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A 2014 Appl. Phys. Lett. 104 051105Google Scholar
[3] Zeng X, Tai K F, Zhang T, Ho C W J, Chen X, Huan A, Sum T C, Wong L H 2014 Sol. Energy Mater. Sol. Cells 124 55Google Scholar
[4] Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902Google Scholar
[5] Gokmen T, Gunawan O, Todorov T K, Mitzi D B 2013 Appl. Phys. Lett. 103 103506Google Scholar
[6] Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar
[7] Yeh L Y, Cheng K W 2014 Thin Solid Films 558 289Google Scholar
[8] Patil R M, Nagapure D R, Chandra G H, Subbaiah Y P V, Gupta M, Rao R P 2020 Phys. Status Solidi 217 1900752Google Scholar
[9] Yuan Z K, Chen S, Xiang H, Gong X G, Walsh A, Park J S, Repins I, Wei S H 2015 Adv. Funct. Mater. 25 6733Google Scholar
[10] Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R, Gershon T S 2016 J. Chem. Phys. 144 104704Google Scholar
[11] Gershon T, Sardashti K, Gunawan O, Mankad R, Singh S, Lee Y S, Ott J A, Kummel A, Haight R 2016 Adv. Energy Mater. 6 1601182Google Scholar
[12] 肖友鹏, 高超, 王涛, 周浪 2017 66 158801Google Scholar
Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar
[13] 曹宇, 祝新运, 陈瀚博, 王长刚, 张鑫童, 候秉东, 申明仁, 周静 2018 67 247301Google Scholar
Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar
[14] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 69 057901Google Scholar
Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901Google Scholar
[15] 张翱, 张春秀, 陈云林, 张春梅, 孟涛 2020 69 118801Google Scholar
Zhang A, Zhang C X, Chen Y L, Zhang C M, Meng T 2020 Acta Phys. Sin. 69 118801Google Scholar
[16] Gershon T, Sardashti K, Lee Y S, Gunawan O, Singh S, Bishop D, Kummel A C, Haight R 2017 Acta Mater. 126 383Google Scholar
[17] Gershon T, Gunawan O, Gokmen T, Brew K W, Singh S, Hopstaken M, Poindester J R, Barnard E S, Buonassisi T, Haight R 2017 J. Appl. Phys. 121 174501Google Scholar
[18] Jia J, Li Y, Yao B, Ding Z, Deng R, Jiang Y, Sui Y 2017 J. Appl. Phys. 121 215305Google Scholar
[19] Jiang Y, Yao B, Jia J, Ding Z, Deng R, Liu D, Sui Y, Wang H, Li Y 2019 J. Appl. Phys. 125 025703Google Scholar
[20] Hibino H, Kageshima H, Kotsugi M, Maeda F, Guo F Z, Watanabe Y 2009 Phys. Rev. B 79 125437Google Scholar
[21] Garg R, Dutta N K, Choudhury N R 2014 Nanomaterials 4 267Google Scholar
[22] Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J, Park J Y 2013 Appl. Phys. Lett. 103 171604Google Scholar
[23] Seo J, Bong J, Cha J, Lim T, Son J, Park S H, Hwang J, Hong S, Ju S 2014 J. Appl. Phys. 116 084312Google Scholar
[24] Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34Google Scholar
[25] Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260Google Scholar
[26] Dréon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C, Boccard M 2020 Nano Energy 70 104495Google Scholar
-
图 2 不同石墨烯功函数情况下电池的 (a)电流密度-电压特性曲线, (b)能带结构, (c)电场分布, (d)载流子浓度, (e)载流子复合率分布, (f)量子效率
Figure 2. Graphene/AZTSe induced p-n junction thin film solar cell with different values of graphene work function (a) current density-voltage curves, (b) energy band structure, (c) electric field, (d) carrier concentration, (e) carrier recombination rate profile, (f) quantum efficiency.
图 3 不同背接触功函数时电池的 (a)电流密度-电压特性曲线, (b)能带结构, (c)电子浓度, (d)载流子复合率分布
Figure 3. Graphene/AZTSe induced p-n junction thin film solar cell with different values of back contact work function (a) current density-voltage curves, (b) energy band structure, (c) carrier concentration, (d) carrier recombination rate profile.
表 1 模拟使用的主要材料参数
Table 1. Main material parameters used in the numerical simulation.
参数 AZTSe 厚度/µm 2 相对介电常数 εr 12.6 电子亲和能 χe/eV 4.2 禁带宽度 Eg/eV 1.4 施主掺杂浓度 ND/cm–3 1011—1016 导带有效态密度 Nc /cm–3 2.2 × 1018 价带有效态密度Nv /cm–3 1.8 × 1019 电子迁移率 µn/cm2·V–1·s–1 100 空穴迁移率 µp/cm2·V-1·s–1 2 缺陷密度 Nt/cm–3 1013—1018 -
[1] Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W C, Goodrich A, Noufi R 2012 Sol. Energy Mater. Sol.Cells 101 154Google Scholar
[2] Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A 2014 Appl. Phys. Lett. 104 051105Google Scholar
[3] Zeng X, Tai K F, Zhang T, Ho C W J, Chen X, Huan A, Sum T C, Wong L H 2014 Sol. Energy Mater. Sol. Cells 124 55Google Scholar
[4] Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902Google Scholar
[5] Gokmen T, Gunawan O, Todorov T K, Mitzi D B 2013 Appl. Phys. Lett. 103 103506Google Scholar
[6] Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar
[7] Yeh L Y, Cheng K W 2014 Thin Solid Films 558 289Google Scholar
[8] Patil R M, Nagapure D R, Chandra G H, Subbaiah Y P V, Gupta M, Rao R P 2020 Phys. Status Solidi 217 1900752Google Scholar
[9] Yuan Z K, Chen S, Xiang H, Gong X G, Walsh A, Park J S, Repins I, Wei S H 2015 Adv. Funct. Mater. 25 6733Google Scholar
[10] Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R, Gershon T S 2016 J. Chem. Phys. 144 104704Google Scholar
[11] Gershon T, Sardashti K, Gunawan O, Mankad R, Singh S, Lee Y S, Ott J A, Kummel A, Haight R 2016 Adv. Energy Mater. 6 1601182Google Scholar
[12] 肖友鹏, 高超, 王涛, 周浪 2017 66 158801Google Scholar
Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar
[13] 曹宇, 祝新运, 陈瀚博, 王长刚, 张鑫童, 候秉东, 申明仁, 周静 2018 67 247301Google Scholar
Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar
[14] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 69 057901Google Scholar
Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901Google Scholar
[15] 张翱, 张春秀, 陈云林, 张春梅, 孟涛 2020 69 118801Google Scholar
Zhang A, Zhang C X, Chen Y L, Zhang C M, Meng T 2020 Acta Phys. Sin. 69 118801Google Scholar
[16] Gershon T, Sardashti K, Lee Y S, Gunawan O, Singh S, Bishop D, Kummel A C, Haight R 2017 Acta Mater. 126 383Google Scholar
[17] Gershon T, Gunawan O, Gokmen T, Brew K W, Singh S, Hopstaken M, Poindester J R, Barnard E S, Buonassisi T, Haight R 2017 J. Appl. Phys. 121 174501Google Scholar
[18] Jia J, Li Y, Yao B, Ding Z, Deng R, Jiang Y, Sui Y 2017 J. Appl. Phys. 121 215305Google Scholar
[19] Jiang Y, Yao B, Jia J, Ding Z, Deng R, Liu D, Sui Y, Wang H, Li Y 2019 J. Appl. Phys. 125 025703Google Scholar
[20] Hibino H, Kageshima H, Kotsugi M, Maeda F, Guo F Z, Watanabe Y 2009 Phys. Rev. B 79 125437Google Scholar
[21] Garg R, Dutta N K, Choudhury N R 2014 Nanomaterials 4 267Google Scholar
[22] Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J, Park J Y 2013 Appl. Phys. Lett. 103 171604Google Scholar
[23] Seo J, Bong J, Cha J, Lim T, Son J, Park S H, Hwang J, Hong S, Ju S 2014 J. Appl. Phys. 116 084312Google Scholar
[24] Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34Google Scholar
[25] Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260Google Scholar
[26] Dréon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C, Boccard M 2020 Nano Energy 70 104495Google Scholar
Catalog
Metrics
- Abstract views: 7571
- PDF Downloads: 134
- Cited By: 0