Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of proton imaging system including fringe field of magnetic lens

Chen Feng Hao Jian-Hong Xu Hai-Bo

Citation:

Optimization of proton imaging system including fringe field of magnetic lens

Chen Feng, Hao Jian-Hong, Xu Hai-Bo
PDF
HTML
Get Citation
  • The proton imaging system is composed of four quadrupole magnetic lenses and a collimator. The quadrupole magnetic lenses can realize point-to-point imaging, and the collimator can improve image quality by controlling proton flux and realize material diagnosis. The magnetic field gradient of an ideal quadrupole lens becomes zero at the edge. Inside the lens, the magnetic field gradient is constant along the axis, while the magnetic field boundary of the actual lens extends outward. In the proton imaging system, the fringing field will affect the proton transport state and the performance of the imaging system as well. In this paper, a method to optimize the system is presented when the fringe field is considered. A proton imaging system of 1.6 GeV is established with the Geant 4 program, in which the magnetic field gradient distribution of the actual lens is approximated by the Bell function. In an ideal imaging system, the external drift length is 1.2 m, the internal drift length is 0.5 m, the length of the magnet is 0.8 m, and the magnetic field gradient is 8.09 T/m. The parameters of the practical imaging system can be obtained by using the optimization method: when the integral difference in magnetic field gradient distribution between the actual lens and the ideal lens is equal to zero, the outer drift length of the imaging system is 1.203 m and the inner drift length is 0.506 m; when the integral difference in the magnetic field gradient distribution between the actual lens and the ideal lens is equal to 1%, the outer drift length is 1.208 m and the inner drift length is 0.516 m. In the numerical simulation, a 1mm-thick copper plate and a concentric ball are chosen as the objects, and the influence of the fringing field on the collimator aperture and that on the proton flux error are studied. The results show that the optimized imaging system can reduce the flux error of protons passing through the object, and the difference in the aperture of collimator is on the order of 10–2 when the integral difference is on the order of 10–2 in magnitude.
      Corresponding author: Xu Hai-Bo, xu_haibo@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675021)
    [1]

    Gavton A, Morris C L, Ziock H J, et al. 1996 Los Alamos National Report 96 420

    [2]

    Mottershead C T, Zumbro J D 1997 Proceedings of the 1997 Particle Accelerator Conference Vancouver B C, Canada, May 12–16, 1997 p1397

    [3]

    Jason AJ, Barlow D B, Blind B, et al. 2001 Proceedings of the 2001 Particle Accelerator Conference Chicago, USA, June 18–22, 2001 p3374

    [4]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Methods Phys. Res., Sect. A 424 84Google Scholar

    [5]

    Rigg P A, Schwartz C L, Hixson R S, et al. 2008 Phys. Rev. B 77 220101Google Scholar

    [6]

    MorrisC L, AblesE, Alrick KR, et al. 2011 J. Appl. Phys. 109 104905Google Scholar

    [7]

    Matthew S. F, Jason A, Camilo E, et al. 2016 Proc. of SPIE 9783 97831X

    [8]

    Matthew S. F, Jason A, Malcolm A, et al. 2017 Rev. Sci. Instrum. 88 013709Google Scholar

    [9]

    AntipovaYM, AfoninaA G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319Google Scholar

    [10]

    GolubevA A, DemidovVS, DemidovaE V, et al. 2010 Tech. Phys. Lett. 36 177Google Scholar

    [11]

    Burtsev V V, Lebedev A I, Mikhailov A L, et al. 2011 Combust., Explos. Shock Waves 47 627Google Scholar

    [12]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303Google Scholar

    [13]

    Yang J J, Zhen X, Wei S M, et al. 2016 CYC 2016 Proceedings of the 21st International Conference on Cyclotrons and their Applications Zurich, Switzerland, September 11–16, 2016 p401

    [14]

    Sheng L N, Zhao Y T, Yang G J, et al. 2014 Laser Part. Beams 32 651Google Scholar

    [15]

    Zhao Y, Zhang Z, Gai W, et al. 2016 Laser Part. Beams 16 1

    [16]

    Wei T, Yang G J, Li Y D, et al. 2014 Chin. Phys. C 38 087003Google Scholar

    [17]

    Wei T, Yang G J, Long J D, et al. 2013 Chin. Phys. C 37 068201Google Scholar

    [18]

    Zhou Z, Fang Y, Chen H, et al. 2019 Matter Radiat. Extremes 4 065402Google Scholar

    [19]

    Aufderheide M B, ParkH, Hartouni E P1999 AIP Conference Proceedings Sydney, Australia, June 28–July 2, 1999 p497

    [20]

    Maksimov A V, Tyurin N E, Fedotov Y S 2014 Tech. Phys. 59 132

    [21]

    Morris C L, Brown E N, Agee C, et al. 2016 Exp. Mech. 56 111Google Scholar

    [22]

    Li Y D, Yang G J, Zhang X D, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 814 104Google Scholar

    [23]

    刘烈烽, 刘承俊, 章冠人 1991 强激光与粒子束 3 535

    Liu L F, Liu C J, Zhang G R, et al. 1991 High Power Laser Part. Beams 3 535

    [24]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Meth. Phys. Res. Sect. A 506 250Google Scholar

    [25]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [26]

    Schott W, Springer K, Winter H J, et al. 1973 Nucl. Instrum. Methods 111 541Google Scholar

    [27]

    陈锋, 许海波, 郑娜, 贾清刚, 佘若谷, 李兴娥 2020 69 032901Google Scholar

    Chen F, Xu H B, Zheng N, Jia Q G, She R G, Li X El 2020 Acta Phys. Sin. 69 032901Google Scholar

  • 图 1  质子成像系统示意图

    Figure 1.  Diagram of proton imaging system.

    图 2  磁透镜中磁场梯度分布

    Figure 2.  Magnetic field distribution in the quadrupole lens.

    图 3  等效漂移距离随着初始位置的改变

    Figure 3.  Equivalent drift distance varies with the initial position.

    图 4  质子成像系统参数示意图

    Figure 4.  Diagram of parameters of proton imaging system

    图 5  等效漂移距离相对值的优化曲线 (a) 积分差值为0; (b) 积分差值为1%

    Figure 5.  Optimized curves of relative value of the equivalent drift distance: (a) The difference of integral value is 0; (b) the difference of integral value is 1%.

    图 6  前端口传输矩阵元随磁场梯度积分差值的变化 (a) x方向; (b) y方向

    Figure 6.  Transfer matrix elements of the front port varies with the gradient integral difference: (a) x direction; (b) y direction.

    图 7  后端口传输矩阵元随磁场梯度积分差值的变化 (a) x方向; (b) y方向

    Figure 7.  Transfer matrix elements of the back port varies with the gradient integral difference: (a) x direction; (b) y direction.

    图 8  积分差值为0时质子通过铜板的通量分布 (a) 2.0 mrad; (b) 3.5 mrad

    Figure 8.  Flux distribution after passing the round copper plate while the integral difference is 0: (a) 2.0 mrad; (b) 3.5 mrad

    图 9  积分差值等于0时质子通过同心球的通量分布 (a) 2.0 mrad; (b) 3.5 mrad

    Figure 9.  Flux distribution after passing the concentric spheres while the integral difference is 0: (a) 2.0 mrad; (b) 3.5 mrad

    图 10  积分差值等于1%时质子通过铜板的通量分布 (a) 2.0 mrad; (b) 3.5 mrad

    Figure 10.  Flux distribution after passing the round copper plate while the integral difference is 1%: (a) 2.0 mrad; (b) 3.5 mrad.

    图 11  积分差值等于1%时质子通过同心球的通量分布 (a) 2.0 mrad; (b) 3.5 mrad

    Figure 11.  Flux distribution after passing the concentric spheres while the integral difference is 1%: (a) 2.0 mrad; (b) 3.5 mrad.

    表 1  优化前质子成像系统参数

    Table 1.  Parameters of the proton imaging system before optimization.

    类型积分差值/%$d/{\rm{m}}$Ds/m$l/{\rm{m}}$${G_{\rm{o} } }/({\rm{T} } \cdot { {\rm{m} }^{ - {\rm{1} } } })$Dt/m
    理想1.20.88.090.5
    含边缘
    (初值)
    00.0731.20.88.090.5
    10.0731.20.88.090.5
    DownLoad: CSV

    表 2  优化后质子成像系统参数

    Table 2.  Parameters of proton imaging system after optimization.

    类型积分差值/%$d/{\rm{m}}$${D_{\rm{s}}}/{\rm{m}}$$l/{\rm{m}}$${G_{\rm{o} } }/({\rm{T} } \cdot { {\rm{m} }^{ - {\rm{1} } } })$${D_{\rm{t}}}/{\rm{m}}$
    理想1.20.88.090.500
    含边缘00.0731.2030.88.090.506
    10.0731.2080.88.090.516
    DownLoad: CSV

    表 3  准直器孔径参数

    Table 3.  Aperture parameters of the angle-cut collimator.

    截断角
    /mrad
    系统
    类型
    积分
    差值/%
    前端/cm后端/cm厚度/m材料
    xyxy
    2.0理想1.491.700.610.610.5W
    含边缘优化前1.491.700.610.61
    01.491.700.610.61
    11.481.700.610.61
    3.5理想1.872.241.071.07
    含边缘优化前1.872.241.071.07
    01.872.241.071.07
    11.872.241.081.07
    DownLoad: CSV
    Baidu
  • [1]

    Gavton A, Morris C L, Ziock H J, et al. 1996 Los Alamos National Report 96 420

    [2]

    Mottershead C T, Zumbro J D 1997 Proceedings of the 1997 Particle Accelerator Conference Vancouver B C, Canada, May 12–16, 1997 p1397

    [3]

    Jason AJ, Barlow D B, Blind B, et al. 2001 Proceedings of the 2001 Particle Accelerator Conference Chicago, USA, June 18–22, 2001 p3374

    [4]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Methods Phys. Res., Sect. A 424 84Google Scholar

    [5]

    Rigg P A, Schwartz C L, Hixson R S, et al. 2008 Phys. Rev. B 77 220101Google Scholar

    [6]

    MorrisC L, AblesE, Alrick KR, et al. 2011 J. Appl. Phys. 109 104905Google Scholar

    [7]

    Matthew S. F, Jason A, Camilo E, et al. 2016 Proc. of SPIE 9783 97831X

    [8]

    Matthew S. F, Jason A, Malcolm A, et al. 2017 Rev. Sci. Instrum. 88 013709Google Scholar

    [9]

    AntipovaYM, AfoninaA G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319Google Scholar

    [10]

    GolubevA A, DemidovVS, DemidovaE V, et al. 2010 Tech. Phys. Lett. 36 177Google Scholar

    [11]

    Burtsev V V, Lebedev A I, Mikhailov A L, et al. 2011 Combust., Explos. Shock Waves 47 627Google Scholar

    [12]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303Google Scholar

    [13]

    Yang J J, Zhen X, Wei S M, et al. 2016 CYC 2016 Proceedings of the 21st International Conference on Cyclotrons and their Applications Zurich, Switzerland, September 11–16, 2016 p401

    [14]

    Sheng L N, Zhao Y T, Yang G J, et al. 2014 Laser Part. Beams 32 651Google Scholar

    [15]

    Zhao Y, Zhang Z, Gai W, et al. 2016 Laser Part. Beams 16 1

    [16]

    Wei T, Yang G J, Li Y D, et al. 2014 Chin. Phys. C 38 087003Google Scholar

    [17]

    Wei T, Yang G J, Long J D, et al. 2013 Chin. Phys. C 37 068201Google Scholar

    [18]

    Zhou Z, Fang Y, Chen H, et al. 2019 Matter Radiat. Extremes 4 065402Google Scholar

    [19]

    Aufderheide M B, ParkH, Hartouni E P1999 AIP Conference Proceedings Sydney, Australia, June 28–July 2, 1999 p497

    [20]

    Maksimov A V, Tyurin N E, Fedotov Y S 2014 Tech. Phys. 59 132

    [21]

    Morris C L, Brown E N, Agee C, et al. 2016 Exp. Mech. 56 111Google Scholar

    [22]

    Li Y D, Yang G J, Zhang X D, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 814 104Google Scholar

    [23]

    刘烈烽, 刘承俊, 章冠人 1991 强激光与粒子束 3 535

    Liu L F, Liu C J, Zhang G R, et al. 1991 High Power Laser Part. Beams 3 535

    [24]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Meth. Phys. Res. Sect. A 506 250Google Scholar

    [25]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [26]

    Schott W, Springer K, Winter H J, et al. 1973 Nucl. Instrum. Methods 111 541Google Scholar

    [27]

    陈锋, 许海波, 郑娜, 贾清刚, 佘若谷, 李兴娥 2020 69 032901Google Scholar

    Chen F, Xu H B, Zheng N, Jia Q G, She R G, Li X El 2020 Acta Phys. Sin. 69 032901Google Scholar

  • [1] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [3] Deng Luan, Du Bao, Cai Hong-Bo, Kang Dong-Guo, Zhu Shao-Ping. Self-generated magnetic field in plasma reconstructed by using inverse Abel transformation in proton radiography. Acta Physica Sinica, 2022, 71(24): 245203. doi: 10.7498/aps.71.20221848
    [4] Huang Hua, Li Jiang-Tao, Wang Qian-Nan, Meng Ling-Biao, Qi Wei, Hong Wei, Zhang Zhi-Meng, Zhang Bo, He Shu-Kai, Cui Bo, Wu Yi-Tong, Zhang Hang, Ji Liang-Liang, Zhou Wei-Min, Hu Jian-Bo. Experimental study on the dynamic compression of materials at XGIII facility by laser proton photography. Acta Physica Sinica, 2022, 71(19): 195202. doi: 10.7498/aps.71.20220919
    [5] Chen Feng, Xu Hai-Bo, Zheng Na, Jia Qing-Gang, She Ruo-Gu, Li Xing-E. Theoretical study of angle-cut collimator based design in high-energy proton radiography. Acta Physica Sinica, 2020, 69(3): 032901. doi: 10.7498/aps.69.20191691
    [6] Chen Feng, Zheng Na, Xu Hai-Bo. Density reconstruction based on energy loss in proton radiography. Acta Physica Sinica, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [7] Li Rong-Feng, Gao Shu-Chao, Xiao Chao-Fan, Xu Zhi-Yi, Xue Xing-Tai, Liu Jian-Bo, Zhao Yan-Ying, Chen Jia-Er, Lu Hai-Yang, Yan Xue-Qing. Generation of ultrafast broadband small angle hundreds MeV electron bunches from laser wakefield acceleration. Acta Physica Sinica, 2017, 66(15): 154101. doi: 10.7498/aps.66.154101
    [8] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Guo Xiao-Qiang, Zhao Wen, Ding Li-Li, Wang Yuan-Ming. Angular dependence of proton single event multiple-cell upsets in nanometer SRAM. Acta Physica Sinica, 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [9] Teng Jian, Zhu Bin, Wang Jian, Hong Wei, Yan Yong-Hong, Zhao Zong-Qing, Cao Lei-Feng, Gu Yu-Qiu. Simulation of electromagnetic soliton radiography under laser-produced proton beam. Acta Physica Sinica, 2013, 62(11): 114103. doi: 10.7498/aps.62.114103
    [10] Yuan Zhi-Lin, Yang Rui, Yang Liu, Song Li-Dan, Sun Li-Ping, Ma Yu-Hong, Wang Meng, Chen Ding-Kang, Guo Jin-Ping, Tang Li-Hong. Study of collimator array based on single collimating lens. Acta Physica Sinica, 2012, 61(18): 184217. doi: 10.7498/aps.61.184217
    [11] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [12] Teng Jian, Hong Wei, Zhao Zong-Qing, Wu Shun-Chao, Qin Xiao-Zun, He Ying-Ling, Gu Yu-Qiu, Ding Yong-Kun. Monte-Carlo study of radiography with laser-produced proton beam. Acta Physica Sinica, 2009, 58(3): 1635-1641. doi: 10.7498/aps.58.1635
    [13] Zhang Bao-Wu, Zhang Wen-Tao, Ma Yan, Li Tong-Bao. Collimation of chromium beam by one-dimensional doppler laser with large collimating slit. Acta Physica Sinica, 2008, 57(9): 5485-5490. doi: 10.7498/aps.57.5485
    [14] Zhang Bai-Gang, Yao Jian-Quan, Lu Yang, Ji Feng, Zhang Tie-Li, Xu De-Gang, Wang Peng, Xu Ke-Xin. Pump source angle tuning in quasi-phase matched optical parametric oscillator. Acta Physica Sinica, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [15] Li Hai-Jun, Gu Chang-Zhi, Dou Yan, Li Jun-Jie. Field emission from individual vertically carbon nanofibers. Acta Physica Sinica, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [16] LU XUE-SHAN, LUO SHOU-MIN. THE ALGORISM AND COMPUTER PROGRAM FOR INDEXING HEXAGONAL AND TETRAGONAL DEBYE-SCHERRER PHOTOGRAPHS. Acta Physica Sinica, 1981, 30(4): 520-525. doi: 10.7498/aps.30.520
    [17] LU XUE-SHAN, LUO SHOU-MIN. THE ALGORISM AND COMPUTER PROGRAMME FOR INDEXING ORTHORHOMBIC DEBYE-SCHERRER PHOTOGRAPHS. Acta Physica Sinica, 1981, 30(11): 1488-1497. doi: 10.7498/aps.30.1488
    [18] GUO CHANG-LIN. DIFFRACTION GEOMETRY OF MONOCHROMATIC X RAY QUADRUPLE FOCUSING CAMERA. Acta Physica Sinica, 1980, 29(9): 1217-1221. doi: 10.7498/aps.29.1217
    [19] XIMEN JI-YE. THE ELECTRON OPTICAL PROPERTIES AND ABERRATION THEORY OF A COMBINED MAGNETIC ROUND LENS AND DEFLECTION SYSTEM. Acta Physica Sinica, 1977, 26(1): 34-53. doi: 10.7498/aps.26.34
    [20] YEH MING-HAN, SUN LIANG-FANG, SHYU CHIEN-MING, CHIN CHIEN-CHUNG, YEH LONG-FEI, CHEN JYH-CHEN, CHEN CHIEN-POU, SHAH GUANG-CHANG, YU CHUEH-HSIEN, LI ZHENG-WU, CHAO CHUNG-YAO. A PROTON ELECTROSTATIC ACCELERATOR. Acta Physica Sinica, 1963, 19(1): 60-69. doi: 10.7498/aps.19.60
Metrics
  • Abstract views:  5085
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  17 July 2020
  • Accepted Date:  15 September 2020
  • Available Online:  03 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回
Baidu
map