Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF

Zhou Guang-Zhao Hu Zhe Yang Shu-Min Liao Ke-Liang Zhou Ping Liu Ke Hua Wen-Qiang Wang Yu-Zhu Bian Feng-Gang Wang Jie

Citation:

Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF

Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie
PDF
HTML
Get Citation
  • Coherent X-ray diffraction imaging (CDI) method is a powerful X-ray imaging technique with high resolution up to nanometer scale. Most of the synchrotron radiation facilities and free electron laser facilities are equipped with this state-of-the-art imaging technique and have made many outstanding achievements in multiple scientific areas. Up to now, although scanning CDI (ptychography) method based on a soft X-ray source has been opened to users, the hard X-ray CDI experimental platform has not been built at Shanghai Synchrotron Radiation Facility (SSRF) which can research some relatively thick specimens and easily extend to three-dimensional imaging. As some new beamlines with undulator source were put into operation recently, it is possible and feasible to build up the CDI experimental platform with hard X-ray. In this article, we report the hard X-ray CDI experimental platform development process and preliminary experimental results of coherent diffraction pattern and image reconstruction at SSRF. Based on the operating BL19U2 biological small-angle X-ray scattering (SAXS) beamline at SSRF, the hard X-ray coherent beam is obtained through effective optical path designation at 12 keV and 13.5 keV. The hard X-ray optimization includes tuning several slits, double crystal monochromator (DCM), horizontal deflection mirror, focusing mirror system and pinhole, etc. Furthermore, hard X-ray CDI experiments are conducted. The spatial coherent length of the incident beam is also measured from the pinhole diffraction pattern. This platform can provide both conventional mode and scanning mode (ptychography) for the coherent diffraction imaging method, and the correct image reconstruction from the experimental diffraction patterns proves that the platform has the experimental capability for hard X-ray CDI. In the conventional forward scattering CDI mode, coherent diffraction patterns of pinhole are collected and used to analyse the coherence property of the optimized X-ray beam. The structure of pinhole is also reconstructed from the diffraction pattern. In the scanning CDI mode, a zone plate is used as a sample. The central area of zone plate is reconstructed correctly. About 90 nm/pixel resolution of reconstruction is achieved which is extremely dependent on the X-ray flux density from the undulator source emission. Hard X-ray CDI experimental platform based on the synchrotron radiation facility is first built in China. It will provide effective software and hardware supporting for the development and application of hard X-ray CDI experiments in China in the future.
      Corresponding author: Hua Wen-Qiang, huawenqiang@zjlab.org.cn ; Wang Yu-Zhu, wangyuzhu@zjlab.org.cn
    [1]

    Xu H J, Zhao Z T 2008 Nucl. Sci. Tech. 19 1Google Scholar

    [2]

    Jiao Y, Xu G, Cui X H, Duan Z, Guo Y Y, He P, Ji D H, Li J Y, Li X Y, Meng C, Peng Y M, Tian S K, Wang J Q, Wang N, Wei Y Y, Xu H S, Yan F, Yu C H, Zhao Y L, Qin Q 2018 J. Synchrotron Radiat. 25 1611Google Scholar

    [3]

    Hua W Q, Zhou G Z, Hu Z, Yang S M, Liao K L, Zhou P, Dong X H, Wang Y Z, Bian F G, Wang J 2019 J. Synchrotron Radiat. 26 619Google Scholar

    [4]

    Mcneil B W J, Thompson N R 2010 Nat. Photon. 4 814Google Scholar

    [5]

    Nugent K A 2010 Adv. Phys. 59 1Google Scholar

    [6]

    范家东, 江怀东 2012 61 218702Google Scholar

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar

    [7]

    周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔 2011 60 028701Google Scholar

    Zhou G Z, Tong Y J, Chen C, Ren Y Q, Wang Y D, Xiao T Q 2011 Acta Phys. Sin. 60 028701Google Scholar

    [8]

    周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔 2012 61 018701Google Scholar

    Zhou G Z, Wang Y D, Ren Y Q, Chen C, Ye L L, Xiao T Q 2012 Acta Phys. Sin. 61 018701Google Scholar

    [9]

    Miao J W, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342Google Scholar

    [10]

    Shi X W, Burdet N, Chen B, Xiong G, Streubel R, Harder R, Robinson I K 2019 Appl. Phys. Res. 6 011306

    [11]

    Jiang H D, Song C Y, Chen C C, Xu R, Raines K S, Fahimian B P, Lu C H, Lee T K, Nakashima A, Urano J, Ishikawa T, Tamano F, Miao J W 2010 Proc. Natl. Acad. Sci. USA 107 11234Google Scholar

    [12]

    Rodriguez J A, Xu R, Chen C C, Huang Z F, Jiang H D, Chen A L, Raines K S, Jr A P, Nam D, Wiegart L, Song C Y, Madsen A, Chushkin Y, Zontone F, Bradley P J, Miao J W 2015 IUCrJ 2 575Google Scholar

    [13]

    Yang W G, Huang X J, Harder R, Clark J N, Robinson I K, Mao H K 2013 Nat. Commun. 4 1680Google Scholar

    [14]

    Holler M, Sicairos M G, Tsai E H R, Dinapoli R, M, Müller E, Bunk O, Raabe J, Aeppli G 2017 Nature 543 402Google Scholar

    [15]

    Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [16]

    Zhang X Y 2018 Synchrotron Radiation Applications (Singapore: World Scientific Hackensack) pp343−388

    [17]

    Grübel G, Madsen A, Robert A (Borsali R, Pecora R eds) 2008 Soft Matter Characterization (Heidelberg: Springer Netherlands) pp953−995

    [18]

    Sinha S K, Jiang Z, Lurio L B 2014 Adv. Mater. 26 7764Google Scholar

    [19]

    张明俊, 郭智, 邰仁忠, 张祥志, 罗豪甦 2015 64 147801Google Scholar

    Zhang M J, Guo Z, Tai R Z, Zhang X Z, Luo H S 2015 Acta Phys. Sin. 64 147801Google Scholar

    [20]

    Xu R, Salha S, Raines K S, Jiang H D, Chen C C, Takahashi Y, Kohmura Y, Nishino Y, Song C Y, Ishikawa T, Miao J W 2011 J. Synchrotron Radiat. 18 293Google Scholar

    [21]

    Rau C, Wagner U, Pesic Z, Fanis A D 2011 Phys. Status Solidi A 208 2522Google Scholar

    [22]

    Xu Z J, Wang C P, Liu H G, Tao X L, Tai R Z 2017 J. Phy. Conf. Ser. 849 012033Google Scholar

    [23]

    Li N, Li X, Wang Y, Liu G, Zhou P, Wu H, Hong C, Bian F, Zhang R 2016 J. Appl. Crystallogr. 49 1428Google Scholar

    [24]

    玻恩M, 沃耳夫E 著 (杨葭荪 译)2009 光学原理: 光的传播、干涉和衍射的电磁理论(第7版) (北京: 电子工业出版社) 第459−525页

    Born M, Wolf E (translated by Yang J S) 2009 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp459−525 (in Chinese)

    [25]

    徐朝银 著 2013 同步辐射光学与工程 (合肥: 中国科学技术大学出版社) 第24−37页

    Xu C Y 2013 Synchrotron Radiation Optics and Engineering (Hefei: Press of University of Science and Technology of China) pp24−37 (in Chinese)

    [26]

    王华, 闫帅, 闫芬, 蒋升, 毛成文, 梁东旭, 杨科, 李爱国, 余笑寒 2012 61 144102Google Scholar

    Wang H, Yan S, Yan F, Jiang S, Mao C W, Liang D X, Yang K, Li A G, Yu X H 2012 Acta Phys. Sin. 61 144102Google Scholar

    [27]

    Tanaka T, Kitamura H 2001 J. Synchrotron Radiat. 8 1221Google Scholar

    [28]

    Hua W Q, Bian F G, Song L, Li X H, Wang J 2013 Chin. Phys. C 37 068001Google Scholar

    [29]

    Yu C J, Lee H C, Chan K, Cha W, Carnis J, Kim Y, Noh D Y, Kim H 2014 J. Synchrotron Radiat. 21 264Google Scholar

    [30]

    Hua W Q, Zhou G Z, Wang Y Z, Zhou P, Yang S M, Peng C Q, Bian F G, Li X H, Wang J 2017 Chin. Opt. Lett. 15 033401Google Scholar

    [31]

    Deng J J, Vine D J, Chen S, Jin Q L, Nashed Y S G, Peterka T, Vogt S, Jacobsen C 2017 Sci. Rep. 7 445Google Scholar

    [32]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

  • 图 1  储存环流强为300 mA时, 不同波荡器K值下, 计算得到不同奇次谐波的(a)能量和(b)亮度分布

    Figure 1.  Calculated (a) energy and (b) brilliance for odd harmonics as a function of the undulator K-value (a target ring current of 300 mA is used).

    图 2  相干衍射实验模式@BL19U2光束线站布局图 (a)侧视图, 垂直方向; (b)上视图, 水平方向

    Figure 2.  Beamline layout of the coherent scattering experimental modes on BL19U2: (a) Side view, vertical direction; (b) top view, horizontal direction.

    图 3  (a)实验装置示意图; (b)现场照片

    Figure 3.  (a) Schematic diagram of experimental equipment; (b) on-site picture.

    图 4  (a), (b)不同入射光束相干度下的针孔衍射图样; (c)水平和(d)垂直方向上的衍射强度分布(图(a), (b)中白色虚线位置); 强度分布均为对数显示

    Figure 4.  (a), (b) Measured diffraction patterns of pinhole with incident beam of reduced coherence; diffracted intensity distribution in the horizontal (c) and vertical (d) direction along the dotted line profile in panel (a) and (b), and the intensity distribution are shown in log scale.

    图 5  针孔样品的(a)相干衍射图, (b) 结构重建图, (c)扫描电镜图

    Figure 5.  Coherent diffraction pattern (a), reconstruction (b) and SEM image (c) of pinhole.

    图 6  (a)探测器采集到的第441张衍射图; 根据衍射图重建波带片样品结构的(b)振幅和(c)相位信息; (d)波带片样品相应结构的电子显微镜图片; 根据衍射图重建的入射光束的(e)振幅和(f)相位信息

    Figure 6.  (a) The 441st diffraction pattern collected by the detector; recovered (b) amplitude and (c) phase information of the sample structure of the Fresnel zone plate according to the diffraction patterns; (d) electron microscope image of the corresponding structures of the wave band specimens; reconstructed (e) amplitude and (f) phase information of the incident beam simultaneously according to the diffraction pattern.

    表 1  国际上同步辐射相干散射(衍射)线站举例列表

    Table 1.  Well-known coherent scattering beamlines in the world.

    光束线站能量范围/keV光斑尺寸/μm相干通量相干实验方法
    NSLS 11-ID6—163—105 × 1011 ph/s@9.65 keVCoSAXS, XPCS
    PETRA-III P105—204.5—403 × 109 ph/sCDI, Bragg CDI, XPCS
    SPring-8 29 XUL4.5—18.7~1—20~109 ph/sCDI, Ptychography
    Diamond I13-16—351 × 1010 ph/s@8 keVCDI, Bragg CDI, Ptychography, XPCS
    APS 34-ID-C5—15~0.75 × 109 ph/s@10 keVCoSAXS, Ptychography
    MAX IV CoSAXS4—2010 or 1001.5 × 1012 ph/s@10 keVCoSAXS, XPCS
    SLS X12 SA4.4—17.925 × 107 × 108 ph/s@6.2 keVCoSAXS
    PLS-II 9 C5—15 < 3001.7 × 1010 ph/s@10 keVCDI, Bragg CDI, XPCS
    TPS 25 A5.5—201—101 × 1010 ph/s@6 keVCDI, XPCS
    DownLoad: CSV

    表 2  储存环流强为300 mA时, 波荡器不同参数下辐射出的能量、亮度、通量和相干通量

    Table 2.  Photon energy and highest brilliance/flux/coherent flux with corresponding undulator parameters (a target ring current of 300 mA is used).

    光子能量/
    keV
    谐波阶数磁场/TK亮度/
    1018 flux·mm–2·mrad–2
    光通量/
    1014 ph·s–1·0.1%BW–1
    相干光通量/
    109 ph·s–1·0.1%BW–1
    830.8221.53519.54.43111
    1030.6541.22112.52.8044.9
    1230.5120.9556.261.3715.3
    13.550.8161.5238.641.6814.8
    1550.7341.3706.091.178.34
    DownLoad: CSV

    表 3  上海光源BL19U2光源点(12 keV时)及传播时的光束相干特性

    Table 3.  Beam parameters of BL19U2 (@12 keV) at the source and KB mirrors.

    水平方向垂直方向
    光源点光斑尺寸397 µm26 µm
    光源点发散度78 µrad23 µrad
    光源点相干长度0.48 µm1.29 µm
    光源点相干度0.15%7.59%
    KB镜处光斑尺寸1073 µm距离光源31.2 m434 µm距离光源点34 m
    KB镜处相干长度3.36 µm57.3 µm
    DownLoad: CSV
    Baidu
  • [1]

    Xu H J, Zhao Z T 2008 Nucl. Sci. Tech. 19 1Google Scholar

    [2]

    Jiao Y, Xu G, Cui X H, Duan Z, Guo Y Y, He P, Ji D H, Li J Y, Li X Y, Meng C, Peng Y M, Tian S K, Wang J Q, Wang N, Wei Y Y, Xu H S, Yan F, Yu C H, Zhao Y L, Qin Q 2018 J. Synchrotron Radiat. 25 1611Google Scholar

    [3]

    Hua W Q, Zhou G Z, Hu Z, Yang S M, Liao K L, Zhou P, Dong X H, Wang Y Z, Bian F G, Wang J 2019 J. Synchrotron Radiat. 26 619Google Scholar

    [4]

    Mcneil B W J, Thompson N R 2010 Nat. Photon. 4 814Google Scholar

    [5]

    Nugent K A 2010 Adv. Phys. 59 1Google Scholar

    [6]

    范家东, 江怀东 2012 61 218702Google Scholar

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar

    [7]

    周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔 2011 60 028701Google Scholar

    Zhou G Z, Tong Y J, Chen C, Ren Y Q, Wang Y D, Xiao T Q 2011 Acta Phys. Sin. 60 028701Google Scholar

    [8]

    周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔 2012 61 018701Google Scholar

    Zhou G Z, Wang Y D, Ren Y Q, Chen C, Ye L L, Xiao T Q 2012 Acta Phys. Sin. 61 018701Google Scholar

    [9]

    Miao J W, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342Google Scholar

    [10]

    Shi X W, Burdet N, Chen B, Xiong G, Streubel R, Harder R, Robinson I K 2019 Appl. Phys. Res. 6 011306

    [11]

    Jiang H D, Song C Y, Chen C C, Xu R, Raines K S, Fahimian B P, Lu C H, Lee T K, Nakashima A, Urano J, Ishikawa T, Tamano F, Miao J W 2010 Proc. Natl. Acad. Sci. USA 107 11234Google Scholar

    [12]

    Rodriguez J A, Xu R, Chen C C, Huang Z F, Jiang H D, Chen A L, Raines K S, Jr A P, Nam D, Wiegart L, Song C Y, Madsen A, Chushkin Y, Zontone F, Bradley P J, Miao J W 2015 IUCrJ 2 575Google Scholar

    [13]

    Yang W G, Huang X J, Harder R, Clark J N, Robinson I K, Mao H K 2013 Nat. Commun. 4 1680Google Scholar

    [14]

    Holler M, Sicairos M G, Tsai E H R, Dinapoli R, M, Müller E, Bunk O, Raabe J, Aeppli G 2017 Nature 543 402Google Scholar

    [15]

    Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [16]

    Zhang X Y 2018 Synchrotron Radiation Applications (Singapore: World Scientific Hackensack) pp343−388

    [17]

    Grübel G, Madsen A, Robert A (Borsali R, Pecora R eds) 2008 Soft Matter Characterization (Heidelberg: Springer Netherlands) pp953−995

    [18]

    Sinha S K, Jiang Z, Lurio L B 2014 Adv. Mater. 26 7764Google Scholar

    [19]

    张明俊, 郭智, 邰仁忠, 张祥志, 罗豪甦 2015 64 147801Google Scholar

    Zhang M J, Guo Z, Tai R Z, Zhang X Z, Luo H S 2015 Acta Phys. Sin. 64 147801Google Scholar

    [20]

    Xu R, Salha S, Raines K S, Jiang H D, Chen C C, Takahashi Y, Kohmura Y, Nishino Y, Song C Y, Ishikawa T, Miao J W 2011 J. Synchrotron Radiat. 18 293Google Scholar

    [21]

    Rau C, Wagner U, Pesic Z, Fanis A D 2011 Phys. Status Solidi A 208 2522Google Scholar

    [22]

    Xu Z J, Wang C P, Liu H G, Tao X L, Tai R Z 2017 J. Phy. Conf. Ser. 849 012033Google Scholar

    [23]

    Li N, Li X, Wang Y, Liu G, Zhou P, Wu H, Hong C, Bian F, Zhang R 2016 J. Appl. Crystallogr. 49 1428Google Scholar

    [24]

    玻恩M, 沃耳夫E 著 (杨葭荪 译)2009 光学原理: 光的传播、干涉和衍射的电磁理论(第7版) (北京: 电子工业出版社) 第459−525页

    Born M, Wolf E (translated by Yang J S) 2009 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp459−525 (in Chinese)

    [25]

    徐朝银 著 2013 同步辐射光学与工程 (合肥: 中国科学技术大学出版社) 第24−37页

    Xu C Y 2013 Synchrotron Radiation Optics and Engineering (Hefei: Press of University of Science and Technology of China) pp24−37 (in Chinese)

    [26]

    王华, 闫帅, 闫芬, 蒋升, 毛成文, 梁东旭, 杨科, 李爱国, 余笑寒 2012 61 144102Google Scholar

    Wang H, Yan S, Yan F, Jiang S, Mao C W, Liang D X, Yang K, Li A G, Yu X H 2012 Acta Phys. Sin. 61 144102Google Scholar

    [27]

    Tanaka T, Kitamura H 2001 J. Synchrotron Radiat. 8 1221Google Scholar

    [28]

    Hua W Q, Bian F G, Song L, Li X H, Wang J 2013 Chin. Phys. C 37 068001Google Scholar

    [29]

    Yu C J, Lee H C, Chan K, Cha W, Carnis J, Kim Y, Noh D Y, Kim H 2014 J. Synchrotron Radiat. 21 264Google Scholar

    [30]

    Hua W Q, Zhou G Z, Wang Y Z, Zhou P, Yang S M, Peng C Q, Bian F G, Li X H, Wang J 2017 Chin. Opt. Lett. 15 033401Google Scholar

    [31]

    Deng J J, Vine D J, Chen S, Jin Q L, Nashed Y S G, Peterka T, Vogt S, Jacobsen C 2017 Sci. Rep. 7 445Google Scholar

    [32]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

  • [1] Qi Nai-Jie, He Xiao-Liang, Wu Li-Qing, Liu Cheng, Zhu Jian-Qiang. Effect of detector photoelectric parameters on ptychographic iterative engine. Acta Physica Sinica, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [2] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] Xu Wen-Hui, Ning Shou-Cong, Zhang Fu-Cai. Review of partially coherent diffraction imaging. Acta Physica Sinica, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [4] Yang Jun-Liang, Li Zhong-Liang, Li Tang, Zhu Ye, Song Li, Xue Lian, Zhang Xiao-Wei. Characteristics of multi-crystals monfiguration X-ray diffraction and application in characterizing synchrotron beamline bandwidth. Acta Physica Sinica, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [5] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [6] Zhang Hong-Bo, Zhang Xi-Ren. Coherence of digital phase conjugation for implementing time reversal in scattering media. Acta Physica Sinica, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [7] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [8] Yu Wei, He Xiao-Liang, Liu-Cheng, Zhu Jian-Qiang. Ptychographic iterative engine with the incoherent illumination. Acta Physica Sinica, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [9] He Xiao-Liang, Liu Cheng, Wang Ji-Cheng, Wang Yue-Ke, Gao Shu-Mei, Zhu Jian-Qiang. Study on the periodic error in ptychographic iterative engine imaging. Acta Physica Sinica, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [10] Qi Jun-Cheng, Ye Lin-Lin, Chen Rong-Chang, Xie Hong-Lan, Ren Yu-Qi, Du Guo-Hao, Deng Biao, Xiao Ti-Qiao. Coherence of X-ray in the third synchrotron radiation source. Acta Physica Sinica, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [11] Man Tian-Long, Wan Yu-Hong, Jiang Zhu-Qing, Wang Da-Yong, Tao Shi-Quan. Measurement of the spatial coherence of extended light source by twin beams-interference method. Acta Physica Sinica, 2013, 62(21): 214203. doi: 10.7498/aps.62.214203
    [12] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [13] Jin Ai-Jun, Wang Ze-Feng, Hou Jing, Guo Liang, Jiang Zong-Fu. Coherence properties of the supercontinuum generated in anomalous dispersion region of photonic crystal fibers. Acta Physica Sinica, 2012, 61(12): 124211. doi: 10.7498/aps.61.124211
    [14] Jiang Hao, Zhang Xin-Ting, Guo Cheng-Shan. Lensless coherent diffractive imaging with a Fresnel diffraction pattern. Acta Physica Sinica, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [15] Jin Ai-Jun, Wang Ze-Feng, Hou Jing, Guo Liang, Jiang Zong-Fu, Xiao Rui. Coherence properties of supercontinuum quantified by complex degree of self-coherence. Acta Physica Sinica, 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [16] Yan Fen, Zhang Ji-Chao, Li Ai-Guo, Yang Ke, Wang Hua, Mao Cheng-Wen, Liang Dong-Xu, Yan Shuai, Li Jiong, Yu Xiao-Han. Fast scanning X-ray microprobe fluorescence imaging based on synchrotron radiation. Acta Physica Sinica, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [17] Zhang Qiang, Hiroyuki Toda. Synchrotron K-edge subtraction imaging and its application to metallic foams. Acta Physica Sinica, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [18] Deng Yu-Qiang, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue. Effects of noise on spectral phase reconstruction with wavelet analysis. Acta Physica Sinica, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
    [19] Huang Wan-Xia, Yuan Qing-Xi, Tian Yu-Lian, Zhu Pei-Ping, Jiang Xiao-Ming, Wang Jun-Yue. Diffraction-enhanced imaging experiments in BSRF. Acta Physica Sinica, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [20] Deng Yu-Qiang, Wu Zu-Bin, Chen Sheng-Hua, Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang. Wavelet transform analysis for phase reconstruction of spectral shearing interferometry of ultrashort optical pulses. Acta Physica Sinica, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
Metrics
  • Abstract views:  15786
  • PDF Downloads:  528
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2019
  • Accepted Date:  19 November 2019
  • Published Online:  05 February 2020

/

返回文章
返回
Baidu
map