Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mixing enhancement for supersonic mixing layer by using plasma synthetic jet

Wang Peng Shen Chi-Bing

Citation:

Mixing enhancement for supersonic mixing layer by using plasma synthetic jet

Wang Peng, Shen Chi-Bing
PDF
HTML
Get Citation
  • Mixing enhancement for supersonic mixing layer is of great importance for developing scramjet engine. The growth rate of supersonic mixing layer is smaller than that of subsonic mixing layer. As the compressibility increases, the mixing enhancement becomes more difficult. Plasma synthetic jet is regarded as a promising flow control technology. The plasma synthetic jet generator can produce high energy jet. This generator has no moving parts and does not need additional gas source. It is the first time that plasma synthetic jet has been used to enhance the mixing in supersonic mixing layers. The influence of plasma synthetic jet on the supersonic mixing layer is investigated experimentally and numerically. The experiments are conducted in the low noise supersonic mixing layer wind tunnel. The Mach number of upper stream and lower stream are 1.37 and 2.39 respectively. The convective Mach number of this wind tunnel is 0.32. The plasma synthetic jet actuators are installed in the splitter plate. The distance between the jet hole and the splitter plate end is 15 mm. The nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and schlieren are used to obtain the response of the supersonic mixing layer to single pulse plasma synthetic jet perturbation. The NPLS successfully captures the large-scaled vortex structures induced by the plasma synthetic jet in the supersonic mixing layers. The effect of plasma synthetic jet is remarkable. The schlieren images show the process of the perturbation. An oblique shock wave is generated when the jet is ejected. The PIV is employed to obtain the influence of plasma synthetic jet on the velocity field. The y-velocity standard deviation increases due to the perturbation. The actuators’ mixing enhancement effects and actuators’ performances at three locations are investigated by two-dimensional numerical simulation. The three actuators are located on the upper, bottom and end surface of splitter plate respectively. The numerical simulation results show that the mixing layer thickness is increased by the plasma synthetic jet perturbation. There are two mechanisms of perturbations while actuators are located at different positions. The actuators installed on the upper and bottom surface of splitter plate influence the mixing layer through perturbing the upper and lower stream respectively. The actuator installed at the end of splitter plate affects the mixing layer directly. The response time of supersonic mixing layers to the perturbation of the actuator installed at the end of splitter plate is shorter than those of the others. The performance of each actuator is sensitive to the location.
      Corresponding author: Shen Chi-Bing, cbshen@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11572346).
    [1]

    Zang A, Tempel T, Yu K, Buckley S 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2005 p1423

    [2]

    Gutmark E J, Schadow C S, Yu K H 1995 Annu. Rev. Fluid Mech. 27 375Google Scholar

    [3]

    Zhang C X, Liu Y, Fu B S, Yu X J 2018 Acta Astronaut. 153 50Google Scholar

    [4]

    Haimovitch Y, Gartenberg E, Roberts J A, Northam G 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, IN, 27−29 June, 1994 p2940

    [5]

    Guirguis R, Grinstein F, Young T, Oran E, Kailasanath K 1987 25th AIAA Aerospace Sciences Meeting Reno, Nevada, 12−15 January, 1987 p0373

    [6]

    Seiner J M, Dash S M, Kenzakowski D C 2001 J. Propul. Power 17 1273Google Scholar

    [7]

    Collin E, Barre S, Bonnet J P 2004 Phys. Fluids 16 765Google Scholar

    [8]

    Fernando E M, Menon S 1993 AIAA J. 31 278Google Scholar

    [9]

    Kharitonov A, Lokotko A, Tchernyshyev A, Kopchenov V, Lomkov K, Rudakov A 2000 38th Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2000 p0559

    [10]

    Freeman A P, Catrakis H J 2009 J. Turbul. 10 1Google Scholar

    [11]

    Adelgren R G, Elliott G S, Crawford J B, Carter C D, Donbar J M, Grosjean D F 2005 AIAA J. 43 776Google Scholar

    [12]

    Zhang D, Tan J, Liang L 2015 Acta Astronaut. 117 440Google Scholar

    [13]

    Narayanaswamy V, Shin J, Clemens N, Raja L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7−10, 2008 p285

    [14]

    Grossman K, Bohdan C, van Wie D 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6−9 , 2003 p57

    [15]

    Grossman K, Cybyk B, van Wie D, Rigling M 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5−8 , 2004 p89

    [16]

    王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 63 194702Google Scholar

    Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar

    [17]

    Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 076101Google Scholar

    [18]

    Zhou Y, Xia Z X, Luo Z B, Wang L 2016 Sci. China Technol. Sc. 60 146

    [19]

    王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云 2017 66 084705Google Scholar

    Wang H Y, Li J, Jin D, Dai H, Can T, Wu Y 2017 Acta Phys. Sin. 66 084705Google Scholar

    [20]

    Hardy P, Barricau P, Caruana D, Gleyzes C, Belinger A, Cambronne J P 2010 40th Fluid Dynamics Conference and Exhibit Chicago, Illinois, 28 June−1 July, 2010 p5103

    [21]

    Huet M 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16−20 , 2014 p2620

    [22]

    Chedevergne F, Léon O, Bodoc V, Caruana D 2015 Int. J. Heat Fluid Fl. 56 1Google Scholar

    [23]

    Bogdanoff D W 1983 AIAA J. 21 926Google Scholar

    [24]

    Papamoschou D 1991 AIAA J. 29 680

    [25]

    Arvind S, Jamey D J 2007 J. Phys. D: Appl. Phys. 40 637Google Scholar

    [26]

    Zhou Y, Xia Z X, Luo Z B, Wang L, Deng X 2017 Acta Astronaut. 133 95Google Scholar

    [27]

    Haack S, Taylor T, Z. Cybyk B, H. Foster C, Alvi F 2011 42nd AIAA Plasmadynamics and Lasers Conference Honolulu, Hawaii, 27−30 June, 2011 p3997

    [28]

    赵玉新 2008 博士学位论文(长沙: 国防科技大学)

    Zhao Y X 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [29]

    罗振兵 2006 博士学位论文(长沙: 国防科技大学)

    Luo Z B 2006 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [30]

    Narayanaswamy V, Raja L L, Clemens N T 2010 AIAA J. 48 297Google Scholar

    [31]

    Freeman L J 2014 Master Thesis (California Polytechnic State University)

    [32]

    周岩 2018 博士学位论文 (长沙: 国防科技大学)

    Zhou Y 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

  • 图 1  超声速混合层风洞示意图

    Figure 1.  Schematic of the supersonic mixing layer wind tunnel.

    图 2  超声速混合层风洞实物图

    Figure 2.  The test section of supersonic mixing layer wind tunnel.

    图 3  安装有等离子体合成射流激励器隔板在风洞中的位置 (a) 隔板在风洞中位置; (b) 激励器在隔板上的位置

    Figure 3.  Schematic of the wind tunnel and the actuator mounted inside a plate: (a) Splitter plate in the wind tunnel; (b) actuator in the splitter plate.

    图 4  两电极等离子体合成射流激励器

    Figure 4.  Two-electrode plasma synthetic actuator

    图 5  纹影系统示意图

    Figure 5.  The schematic diagram of schlieren system

    图 6  等离子体合成射流试验系统的时序示意图

    Figure 6.  Schematics of the experimental system sequence chart.

    图 7  纹影结果 (a) T0 + 0 μs; (b) T0 + 67 μs; (c) T0 + 233 μs

    Figure 7.  Schlieren images: (a) T0 + 0 μs; (b) T0 + 67 μs; (c) T0 + 233 μs.

    图 8  等离子体合成射流对超声速混层作用的NPLS结果 (a) 未受扰动; (b) T0 + 180 μs; (c) T0 + 230 μs

    Figure 8.  NPLS images of supersonic mixing layer under perturbation and unperturbation: (a) Unperturbation; (b) T0 + 180 μs; (c) T0 + 230 μs.

    图 9  PIV的实验结果 (a) 流向速度的平均结果; (b) T0 + 230 μs时刻流向速度的平均结果; (c) 横向速度标准差; (d) T0 + 230 μs时刻横向速度标准差

    Figure 9.  PIV experimental results: (a) Averaged X-velocity; (b) averaged X-velocity at T0 + 230 μs; (c) Y-velocity standard deviation; (d) Y-velocity standard deviation at T0 + 230 μs.

    图 10  仿真物理模型 (a) 无扰动; (b) 激励器在隔板上表面; (c) 激励器在隔板尾端; (d) 激励器在隔板下表面

    Figure 10.  Physical model: (a) Unperturbation; (b) the actuator at the upper surface of the splitter plate; (c) the actuator at the end surface of splitter plate; (d) the actuator at bottom surface of splitter plate.

    图 11  算例验证的计算模型及网格

    Figure 11.  Calculation model and grid for code validation.

    图 12  网格无关性及算例验证

    Figure 12.  Certification of grid independence and code validation

    图 13  (T0 + 67 μs)时刻纹影实验结果与数值纹影结果对比 (a) 纹影实验结果; (b) 数值纹影结果

    Figure 13.  T0 + 67 μs, numerical and experimental schlierens: (a) Experimental schlieren; (b) numerical schlieren.

    图 14  (T0 + 180 μs)时刻NPLS结果与数值仿真密度场对比 (a) NPLS结果; (b) 数值仿真密度场

    Figure 14.  T0 + 180 μs, contour of density and NPLS result: (a) NPLS result; (b) contour of density.

    图 15  (T0 + 555 μs)时刻密度场 (a) 未受扰动; (b) 激励器在隔板上表面; (c) 激励器在隔板尾端; (d) 激励器在隔板下表面

    Figure 15.  Contours of density at T0 + 555 μs: (a) Unperturbation; (b) the actuator at the upper surface of the splitter plate; (c) the actuator at the end surface of the splitter plate; (d) the actuator at the bottom surface of the splitter plate.

    图 16  (T0 + 75 μs)时刻温度云图和流线 (a) 激励器在隔板上表面; (b) 激励器在隔板尾端

    Figure 16.  Simulation of the temperature and flow: (a) The actuator at the upper surface of the splitter plate; (b) the actuator at the end surface of the splitter plate

    图 17  时均速度混合层厚度

    Figure 17.  Time-averaged velocity thickness of mixing layer

    图 18  激励器出口参数 (a) 激励器出口质量流量; (b) 激励器出口速度; (c) 激励器出口动量率; (d) 激励器出口压力

    Figure 18.  The parameters of actuator outlet: (a) The mass flow rate of actuator outlet; (b) the velocity of actuator outlet; (c) the momentum rate of actuator outlet; (d) the pressure of actuator outlet.

    图 19  激励器腔体内参数 (a) 激励器腔体密度; (b) 激励器腔体内温度; (c) 激励器腔体内压力

    Figure 19.  Parameters of actuator cavity: (a) Density of the gas in the actuator chamber; (b) temperature of the gas in the actuator chamber; (c) pressure of the gas in the actuator chamber.

    表 1  压力匹配情况下校测流场参数

    Table 1.  Flow parameters of supersonic mixing layer.

    马赫数Ma速度U/m·s–1静温T/K总温T0/K运动黏度μ/
    10–5 m2·s–1
    1.37405.16218.393001.4312
    2.39567.18139.873000.9635
    DownLoad: CSV
    Baidu
  • [1]

    Zang A, Tempel T, Yu K, Buckley S 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2005 p1423

    [2]

    Gutmark E J, Schadow C S, Yu K H 1995 Annu. Rev. Fluid Mech. 27 375Google Scholar

    [3]

    Zhang C X, Liu Y, Fu B S, Yu X J 2018 Acta Astronaut. 153 50Google Scholar

    [4]

    Haimovitch Y, Gartenberg E, Roberts J A, Northam G 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, IN, 27−29 June, 1994 p2940

    [5]

    Guirguis R, Grinstein F, Young T, Oran E, Kailasanath K 1987 25th AIAA Aerospace Sciences Meeting Reno, Nevada, 12−15 January, 1987 p0373

    [6]

    Seiner J M, Dash S M, Kenzakowski D C 2001 J. Propul. Power 17 1273Google Scholar

    [7]

    Collin E, Barre S, Bonnet J P 2004 Phys. Fluids 16 765Google Scholar

    [8]

    Fernando E M, Menon S 1993 AIAA J. 31 278Google Scholar

    [9]

    Kharitonov A, Lokotko A, Tchernyshyev A, Kopchenov V, Lomkov K, Rudakov A 2000 38th Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2000 p0559

    [10]

    Freeman A P, Catrakis H J 2009 J. Turbul. 10 1Google Scholar

    [11]

    Adelgren R G, Elliott G S, Crawford J B, Carter C D, Donbar J M, Grosjean D F 2005 AIAA J. 43 776Google Scholar

    [12]

    Zhang D, Tan J, Liang L 2015 Acta Astronaut. 117 440Google Scholar

    [13]

    Narayanaswamy V, Shin J, Clemens N, Raja L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7−10, 2008 p285

    [14]

    Grossman K, Bohdan C, van Wie D 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6−9 , 2003 p57

    [15]

    Grossman K, Cybyk B, van Wie D, Rigling M 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5−8 , 2004 p89

    [16]

    王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 63 194702Google Scholar

    Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar

    [17]

    Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 076101Google Scholar

    [18]

    Zhou Y, Xia Z X, Luo Z B, Wang L 2016 Sci. China Technol. Sc. 60 146

    [19]

    王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云 2017 66 084705Google Scholar

    Wang H Y, Li J, Jin D, Dai H, Can T, Wu Y 2017 Acta Phys. Sin. 66 084705Google Scholar

    [20]

    Hardy P, Barricau P, Caruana D, Gleyzes C, Belinger A, Cambronne J P 2010 40th Fluid Dynamics Conference and Exhibit Chicago, Illinois, 28 June−1 July, 2010 p5103

    [21]

    Huet M 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16−20 , 2014 p2620

    [22]

    Chedevergne F, Léon O, Bodoc V, Caruana D 2015 Int. J. Heat Fluid Fl. 56 1Google Scholar

    [23]

    Bogdanoff D W 1983 AIAA J. 21 926Google Scholar

    [24]

    Papamoschou D 1991 AIAA J. 29 680

    [25]

    Arvind S, Jamey D J 2007 J. Phys. D: Appl. Phys. 40 637Google Scholar

    [26]

    Zhou Y, Xia Z X, Luo Z B, Wang L, Deng X 2017 Acta Astronaut. 133 95Google Scholar

    [27]

    Haack S, Taylor T, Z. Cybyk B, H. Foster C, Alvi F 2011 42nd AIAA Plasmadynamics and Lasers Conference Honolulu, Hawaii, 27−30 June, 2011 p3997

    [28]

    赵玉新 2008 博士学位论文(长沙: 国防科技大学)

    Zhao Y X 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [29]

    罗振兵 2006 博士学位论文(长沙: 国防科技大学)

    Luo Z B 2006 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [30]

    Narayanaswamy V, Raja L L, Clemens N T 2010 AIAA J. 48 297Google Scholar

    [31]

    Freeman L J 2014 Master Thesis (California Polytechnic State University)

    [32]

    周岩 2018 博士学位论文 (长沙: 国防科技大学)

    Zhou Y 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

  • [1] Zhang Zhen, Yi Shi-He, Liu Xiao-Lin, Chen Shi-Kang, Zhang Zhen. Flow evolution of mixed layer on convex curvature wall under hypersonic conditions. Acta Physica Sinica, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [2] Niu Zhong-Guo, Xu Xiang-Hui, Wang Jian-Feng, Jiang Jia-Li, Liang Hua. Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [3] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [4] Wang Zhen-Xing, Cao Zhi-Yuan, Li Rui, Chen Feng, Sun Li-Qiong, Geng Ying-San, Wang Jian-Hua. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field. Acta Physica Sinica, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [5] Experimental study on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211425
    [6] Tang Bing-Liang, Guo Shan-Guang, Song Guo-Zheng, Luo Yan-Hao. Experimental study on supersonic plate boundary layer transition under pulsed arc plasma excitation control. Acta Physica Sinica, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [7] Guo Guang-Ming, Zhu Lin, Xing Bo-Yang. Density distribution characteristics of fluid inside vortex in supersonic mixing layer. Acta Physica Sinica, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [8] Xie Wen-Ke, Liu Jun-Sheng, Fei Jia-Le, Zhou Quan, Xia Hui, Chen Xin, Zhang Pan, Peng Yi-Ming, Yu Tao. Influence of weighting function on accuracy of supersonic mixing layer wave-front variance estimation with linking equation. Acta Physica Sinica, 2019, 68(9): 094202. doi: 10.7498/aps.68.20182269
    [9] Zhang Xiao-Shi, Xu Hao, Wang Cong, Lu Hong-Zhi, Zhao Jing. Experimental study on underwater supersonic gas jets in water flow. Acta Physica Sinica, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [10] Liu Qiang, Luo Zhen-Bing, Deng Xiong, Yang Sheng-Ke, Jiang Hao. Linear stability of supersonic boundary layer with synthetic cold/hot jet control. Acta Physica Sinica, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [11] Zhang Dong-Dong, Tan Jian-Guo, Li Hao, Hou Ju-Wei. Fine flow structure and mixing characteristic in supersonic flow induced by a lobed mixer. Acta Physica Sinica, 2017, 66(10): 104702. doi: 10.7498/aps.66.104702
    [12] Wang Hong-Yu, Li Jun, Jin Di, Dai Hui, Gan Tian, Wu Yun. Response of the shock wave/boundary layer interaction to the plasma synthetic jet. Acta Physica Sinica, 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [13] Liu Meng-Ke, Zhang Hui, Fan Bao-Chun, Han Yang, Gui Ming-Yue. The mechanism investigation of two-degree-of-freedom vortex-induced vibration with electro-magnetic forces. Acta Physica Sinica, 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
    [14] Zhang Xin, Huang Yong, Wang Wan-Bo, Tang Kun, Li Hua-Xing. Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator. Acta Physica Sinica, 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [15] Fu Jia, Yi Shi-He, Wang Xiao-Hu, Zhang Qing-Hu, He Lin. Experimental study on flow visualization of hypersonic flat plate boundary layer. Acta Physica Sinica, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [16] Zhao Guang-Yin, Li Ying-Hong, Liang Hua, Hua Wei-Zhuo, Han Meng-Hu. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [17] Yin Ji-Fu, You Yun-Xiang, Li Wei, Hu Tian-Qun. Numerical analysis for the characteristics of flow control around a circular cylinder with a turbulent boundary layer separation using the electromagnetic force. Acta Physica Sinica, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [18] Wu Yu, Yi Shi-He, Chen Zhi, Zhang Qing-Hu, Gang Dun-Dian. Experimental investigations on structures of supersonic laminar/turbulent flow over a compression ramp. Acta Physica Sinica, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [19] Li Gang, Li Yi-Ming, Xu Yan-Ji, Zhang Yi, Li Han-Ming, Nie Chao-Qun, Zhu Jun-Qiang. Experimental study of near wall region flow control by dielectric barrier discharge plasma. Acta Physica Sinica, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [20] Yuan Xing-Qiu, Li Hui, Zhao Tai-Ze, Yu Guo-Yang, Guo Wen-Kang, Xu Ping. Numerical modeling of supersonic plasma jet. Acta Physica Sinica, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
Metrics
  • Abstract views:  8035
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  06 May 2019
  • Accepted Date:  09 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回
Baidu
map