Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Moving target detection algorithm based on spatiotemporal correlation multi-channel clustering

Xu Yan Wang Pei-Guang Yang Qing Dong Jiang-Tao

Citation:

Moving target detection algorithm based on spatiotemporal correlation multi-channel clustering

Xu Yan, Wang Pei-Guang, Yang Qing, Dong Jiang-Tao
PDF
HTML
Get Citation
  • In the process of tracking target, certain multi-modal background scenes are not suitable for the off-line training model, and moving target detection is affected as background in the current video environment is mostly multi-modal scene with much noise, and the characters of moving targets irregularly change, which,therefore, requires a more stable and robust moving target detection algorithm. To solve this problem, taking advantage of spatiotemporal relationship learning, the mixed Gaussian model (GMM) is improved in three aspects.First, the initialization method combining five-frame difference and intra-frame neighborhood average is proposed to obtain the initial parameters of the mixed Gaussian model. The five-frame difference method is introduced to obtain the initial parameters of the model, so that the background model is closer to the real scene. The intra-frame neighborhood average value is introduced, and an accumulation matrix CA is proposed to record the number of neighboring pixel points, then to enhance the information relevant to the neighborhood. This process can reduce the discontinuity of the target. Second, the calculation method of the neighborhood correlation is introduced to update the parameter of Gaussian model. Since the single pixel feature is related to the neighborhood random correlation, the random subsampling technology and neighborhood spatial propagation theory are combined together, and the execution efficiency is taken into account to simplify the process of updating model. To speed up the model convergence, an observation vector is built in the time dimension to optimize the model parameters, and the weight ω is gained based on the posterior probability. Then, the color-gradient method incooperated with the color HSI space and gradient information is adopted in this paper to complete the multi-channel Gaussian mixture model. The initial and the updated parameters of the Gaussian model in each channel can be acquired via the above steps. To simplify the computation of three channels, the random sampling of background pixels is introduced. Finally the detection of moving targets in complex environments is realized. The experiments show that the proposed algorithm has a great improvement in suppressing the influence of complex background and detecting target integrity, and the influence of the moving target in the initial stage is eliminated.
      Corresponding author: Wang Pei-Guang, pgwang@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11771115).
    [1]

    Barron J L, Fleet D J, Beauchemin S S 1994 Computer Vision and Pattern Recognition Manufactured, Netherlands, February, 1994 p43

    [2]

    赖丽君, 徐智勇, 张栩铫 2016 红外与激光工程 45 273

    Lai L J, Xu Z Y, Zhang X Y 2016 Infrared and Laser Engineering 45 273

    [3]

    崔智高, 王华, 李艾华 2017 66 084203Google Scholar

    Cui Z G, Wang H, Li A H 2017 Acta Phys. Sin. 66 084203Google Scholar

    [4]

    Li W, Yao J G, Dong T Z, Li H 2016 International Congress on Image & Signal Processing Shenyang, China October 14—16, 2015 p969

    [5]

    Staffer C, Grimson W L 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, Colorado, June 23—25, 1999 p2246

    [6]

    Wren C R, Azarbayejani A, Darrell T, Pentland P A 1997 IEEE Transactions on Pattern Analysis and Machine Intelligence Washington, DC, USA 1997 p780

    [7]

    赵旭东, 刘鹏, 唐降龙 2011 自动化学报 37 915

    Zhao X D, Liu P, Tang J L 2011 Acta Automatic Sinica 37 915

    [8]

    Thierry B, Baf F E, Vachon B 2008 Recent Patents on Computer Science 1 219Google Scholar

    [9]

    Kaewtrakulpong P, Bowden R 2002 Kluwer Academic Publishers 135

    [10]

    Kang K, Cao Y, Zhang J, Wang Z F 2016 Multimedia Tools & Applications 75 1443

    [11]

    李晓瑜, 马大中, 付英杰 2018 吉林大学学报(信息科学版) 36 61

    Li X Y, Ma D Z, Fu Y J 2018 Journal of Jilin University (Information Science Edition) 36 61

    [12]

    朱文杰, 王广龙, 田杰, 乔中涛, 高凤岐 2018 北京理工大学学报 38 165

    Zhu W J, Wang G L, Tian J, Qiao Z T, Gao F Q 2018 Journal of Beijing Institute of Technology 38 165

    [13]

    Chen Y Y, Wang J Q, Lu H Q 2015 IEEE International Conference on Multimedia and Expo Turin, Italy, June 2 9

    [14]

    Jeon M, Noh S, Noh S J, Jeon M 2012 Asian Conference on Computer Vision Daejeon, Korea, November 05—09, 2012 p493

    [15]

    Choi M, Sweetman B 2013 Structural Health Monitoring 9 13

    [16]

    Barnich O, Droogenbroeck M V 2011 IEEE Trans. Image Process. 20 1709Google Scholar

    [17]

    徐艳, 董江涛, 王少华 2010 59 7535Google Scholar

    Xu Y, Dong J T, Wang S H 2010 Acta Phys. Sin. 59 7535Google Scholar

    [18]

    Maha M A, Shedeed H A, Hussein A S 2010 International Conference on Image Processing Hong Kong September 26—29, 2010 p3453

    [19]

    李艳荻, 徐熙平, 陈江, 王鹤程 2017 仪器仪表学报 38 445

    Li Y D, Xu X P, Chen J, Wang H C 2017 Chinese Journal of Scientific Instrument 38 445

    [20]

    Martin D, Fahad S K, Michael F, Weijer J V D 2014 IEEE Conference on Computer Vision and Pattern Recognition Columbus, USA, June 23—28, 2014 p1090

    [21]

    Jiang Y S, Ma J W 2015 IEEE Conference on Computer Vision and Pattern Recognition Boston, USA, June 7—12, 2015 p240

    [22]

    Cuevas C, Yáñez E M, García N 2016 Comput. Vision and Image Understanding 152 p103Google Scholar

    [23]

    Goyette N, Pierre M J, Porikli F, Konrad J, Ishwar P 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops Providence, Rhode Island, June 16—21, 2012 p1

  • 图 1  t时刻滑动窗口N内的图像序列

    Figure 1.  The image sequence in the sliding window N at time t

    图 2  模型参数更新流程

    Figure 2.  Model parameter update process.

    图 3  算法执行效率对比

    Figure 3.  Algorithm execution efficiency comparison.

    图 4  算法精准度和准确率验证 (a)、(c) 精准度; (b)、(d) 准确率

    Figure 4.  The accuracy and accuracy of the algorithm verify the results: (a)、(c) precision; (b)、(d) accuracy.

    图 5  O_CL_01数据集第161帧的处理结果 (a) 原始图像; (b) 标注真值; (c) GMM; (d) RGB_GMM; (e) ViBe; (f) HSG_GMM

    Figure 5.  The result of the frame 161 in O_CL_01 data set: (a) Original image; (b) true Value image; (c) GMM result; (d) RGB_GMM result; (e) ViBe result; (f) HSG_GMM result.

    图 6  初始视频中存在动目标的静态背景检验结果 (a)原始图像; (b)GMM算法结果; (c) RGB-GMM结果; (d) ViBe结果; (e) HSG-GMM结果

    Figure 6.  Detection result of moving target in initial video in static background: (a) Initial image; (b) GMM result; (c) RGB-GMM result; (d) ViBe result; (e) HSG-GMM result.

    图 7  动态背景环境中的运动目标检测 (a) 原始图像;(b) GMM; (c) RGB-GMM; (d) ViBe; (e) HSG-GMM

    Figure 7.  Moving target detection in dynamic background environment: (a) Initial image;(b) GMM; (c) RGB-GMM; (d) ViBe; (e) HSG-GMM.

    Baidu
  • [1]

    Barron J L, Fleet D J, Beauchemin S S 1994 Computer Vision and Pattern Recognition Manufactured, Netherlands, February, 1994 p43

    [2]

    赖丽君, 徐智勇, 张栩铫 2016 红外与激光工程 45 273

    Lai L J, Xu Z Y, Zhang X Y 2016 Infrared and Laser Engineering 45 273

    [3]

    崔智高, 王华, 李艾华 2017 66 084203Google Scholar

    Cui Z G, Wang H, Li A H 2017 Acta Phys. Sin. 66 084203Google Scholar

    [4]

    Li W, Yao J G, Dong T Z, Li H 2016 International Congress on Image & Signal Processing Shenyang, China October 14—16, 2015 p969

    [5]

    Staffer C, Grimson W L 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, Colorado, June 23—25, 1999 p2246

    [6]

    Wren C R, Azarbayejani A, Darrell T, Pentland P A 1997 IEEE Transactions on Pattern Analysis and Machine Intelligence Washington, DC, USA 1997 p780

    [7]

    赵旭东, 刘鹏, 唐降龙 2011 自动化学报 37 915

    Zhao X D, Liu P, Tang J L 2011 Acta Automatic Sinica 37 915

    [8]

    Thierry B, Baf F E, Vachon B 2008 Recent Patents on Computer Science 1 219Google Scholar

    [9]

    Kaewtrakulpong P, Bowden R 2002 Kluwer Academic Publishers 135

    [10]

    Kang K, Cao Y, Zhang J, Wang Z F 2016 Multimedia Tools & Applications 75 1443

    [11]

    李晓瑜, 马大中, 付英杰 2018 吉林大学学报(信息科学版) 36 61

    Li X Y, Ma D Z, Fu Y J 2018 Journal of Jilin University (Information Science Edition) 36 61

    [12]

    朱文杰, 王广龙, 田杰, 乔中涛, 高凤岐 2018 北京理工大学学报 38 165

    Zhu W J, Wang G L, Tian J, Qiao Z T, Gao F Q 2018 Journal of Beijing Institute of Technology 38 165

    [13]

    Chen Y Y, Wang J Q, Lu H Q 2015 IEEE International Conference on Multimedia and Expo Turin, Italy, June 2 9

    [14]

    Jeon M, Noh S, Noh S J, Jeon M 2012 Asian Conference on Computer Vision Daejeon, Korea, November 05—09, 2012 p493

    [15]

    Choi M, Sweetman B 2013 Structural Health Monitoring 9 13

    [16]

    Barnich O, Droogenbroeck M V 2011 IEEE Trans. Image Process. 20 1709Google Scholar

    [17]

    徐艳, 董江涛, 王少华 2010 59 7535Google Scholar

    Xu Y, Dong J T, Wang S H 2010 Acta Phys. Sin. 59 7535Google Scholar

    [18]

    Maha M A, Shedeed H A, Hussein A S 2010 International Conference on Image Processing Hong Kong September 26—29, 2010 p3453

    [19]

    李艳荻, 徐熙平, 陈江, 王鹤程 2017 仪器仪表学报 38 445

    Li Y D, Xu X P, Chen J, Wang H C 2017 Chinese Journal of Scientific Instrument 38 445

    [20]

    Martin D, Fahad S K, Michael F, Weijer J V D 2014 IEEE Conference on Computer Vision and Pattern Recognition Columbus, USA, June 23—28, 2014 p1090

    [21]

    Jiang Y S, Ma J W 2015 IEEE Conference on Computer Vision and Pattern Recognition Boston, USA, June 7—12, 2015 p240

    [22]

    Cuevas C, Yáñez E M, García N 2016 Comput. Vision and Image Understanding 152 p103Google Scholar

    [23]

    Goyette N, Pierre M J, Porikli F, Konrad J, Ishwar P 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops Providence, Rhode Island, June 16—21, 2012 p1

  • [1] Li Wei-Jia, Shen Xiao-Hong, Li Ya-An. Unbiased multivariate multiscale sample entropy. Acta Physica Sinica, 2024, 73(11): 110502. doi: 10.7498/aps.73.20231133
    [2] He Rui-Hui, Zhang Hai-Feng, Wang Huan, Ma Chuang. Gaussian mixture model based reconstruction of undirected networks. Acta Physica Sinica, 2024, 73(17): 178901. doi: 10.7498/aps.73.20240552
    [3] Qin Jian. Investigation of Gaussian boson sampling under phase noise of the light source. Acta Physica Sinica, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [4] Wang Ren, Guo Jing-Bo, Hui Jun-Peng, Wang Ze, Liu Hong-Jun, Xu Yuan-Nan, Liu Yun-Fo. Statistical compressive sensing based on convolutional Gaussian mixture model. Acta Physica Sinica, 2019, 68(18): 180701. doi: 10.7498/aps.68.20190414
    [5] Xia Mao-Peng, Li Jian-Jun, Gao Dong-Yang, Hu You-Bo, Sheng Wen-Yang, Pang Wei-Wei, Zheng Xiao-Bing. Absolute calibration of an analog InSb detector based on multimode spatial correlation of correlated photons. Acta Physica Sinica, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [6] Zheng Shi-Lian, Yang Xiao-Niu, Zhao Zhi-Jin. Reconstruction verification for random demodulator based compressed sampling. Acta Physica Sinica, 2014, 63(22): 228401. doi: 10.7498/aps.63.228401
    [7] Zhang Yong-Sheng, Qiu Yang, Zhang Chao-Xiang, Li Hua, Zhang Shu-Lin, Wang Yong-Liang, Xu Xiao-Feng, Ding Hong-Sheng, Kong Xiang-Yan. Multi-channel magnetocardiogardiography system calibration. Acta Physica Sinica, 2014, 63(22): 228501. doi: 10.7498/aps.63.228501
    [8] Cheng Cong, Wu Fu-Gen, Zhang Xin, Yao Yuan-Wei. Phononic crystal multi-channel low-frequency filter based on locally resonant unit. Acta Physica Sinica, 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [9] Yan Han, Zhang Wen-Ming, Hu Kai-Ming, Liu Yan, Meng Guang. Investigation on characteristics of flow in microchannels with random surface roughness. Acta Physica Sinica, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [10] Zhou Jun, Yuan Hao, Song Jun. The time evolution of relative density operator in phase diffusion channels. Acta Physica Sinica, 2012, 61(3): 030302. doi: 10.7498/aps.61.030302
    [11] Li Hong-Wei, Zhou Yun-Long, Liu Xu, Sun Bin. Stochastic subspsace parameter identification and stability diagram of gas-liquid two-phase flow patterns. Acta Physica Sinica, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [12] Zhao Sheng-Mei, Liu Jing. Capacity of quantum multiple access Gaussian channel. Acta Physica Sinica, 2010, 59(2): 771-777. doi: 10.7498/aps.59.771
    [13] Liu Man, Cheng Chuan-Fu, Song Hong-Sheng, Teng Shu-Yun, Liu Gui-Yuan. Phase singularities of speckle field produced by the scattering from Gaussian correlation random surfaces. Acta Physica Sinica, 2009, 58(8): 5376-5384. doi: 10.7498/aps.58.5376
    [14] Chen Yi-Nan, Jin Wei-Qi, Zhao Lei, Zhao Lin. Resolution restoration algorithm based on maximum a posteriori from Poisson-Markov distribution and blind multichannel deconvolution. Acta Physica Sinica, 2009, 58(1): 264-271. doi: 10.7498/aps.58.264
    [15] Zhang Guang-Jun, Xu Jian-Xue. Characteristic of nonlinear system stochastic resonance in the neighbourhood of bifurcation point. Acta Physica Sinica, 2005, 54(2): 557-564. doi: 10.7498/aps.54.557
    [16] ZHANG BIN, LV BAI-DA. MODE CORRELATION AND COHERENT-MODE REPRESEN-TATION OF MULTI-MODE LASER BEAMS. Acta Physica Sinica, 1999, 48(1): 58-64. doi: 10.7498/aps.48.58
    [17] CHENG CHUAN-FU, QI DONG-PING, LIU DE-LI, TENG SHU-YUN. THE COMPUTATIONAL SIMULATIONS OF THE GAUSSIAN CORRELATION RANDOM SURFACE AND ITS LIGHT-SCATTERING SPECKLE FIELD AND THE ANALYSIS OF THE INTENSITY PROBABILITY DENSITY. Acta Physica Sinica, 1999, 48(9): 1635-1643. doi: 10.7498/aps.48.1635
    [18] LIU TONG-JIANG, ZHANG ZHI-JIE, ZHAO YI-JUN. ATOMIC MANY-BODY CALCULATIONS ON THE GROUND STATE EXCHANGE-CORRELATION ENERGY OF BERYLLIUM ATOM. Acta Physica Sinica, 1988, 37(2): 254-260. doi: 10.7498/aps.37.254
    [19] CHEN GENG-HUA, ZHAO ZHONG-XIAN. TRANSMISSION PROBABILITY IN ONE-DIMENSIONAL NORMAL-METAL MULTICHANNEL STRUCTURE. Acta Physica Sinica, 1987, 36(6): 725-735. doi: 10.7498/aps.36.725
    [20] LI JIA-MING. A MULTICHANNEL THEORY OF INVERSE TWO-ELECTRON RECOMBINATION. Acta Physica Sinica, 1983, 32(1): 84-91. doi: 10.7498/aps.32.84
Metrics
  • Abstract views:  7106
  • PDF Downloads:  46
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2019
  • Accepted Date:  20 May 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map