Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Micromagnetic modeling of magnetization switching and oscillation modes in spin valve with tilted spin polarizer

Lv Gang Zhang Hong Hou Zhi-Wei

Citation:

Micromagnetic modeling of magnetization switching and oscillation modes in spin valve with tilted spin polarizer

Lv Gang, Zhang Hong, Hou Zhi-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Materials with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in the nonvolatile magnetic memory and spin-torque oscillators. Hear in this paper, we report a special interesting spin-transfer-driven magnetic behavior in perpendicularly magnetized (Co/Ni) -based spin-valve nano-pillars due to the reduced symmetry of easy axis in the free layer. The micromagnetic simulations indicate that a dip in the average magnetization curve can take place due to the reduced symmetry such as tilt of the magnetic field as well as the easy axis of the free and polarizer layers. In order to further clarify the physics mechanism of the dip, we carry out a series of new simulation studies. In our simulations, we consider a spin-valve nano-pillar with perpendicular anisotropy free layer and a 3 tilted polarizer layer. A negative perpendicular magnetic field and a positive perpendicular current are both applied simultaneously. In the average magnetization curves mz as a function of the magnetic field with various currents, three dips are observed. Note that although the spin-transfer torque is essential to the appearance of the dips, the position of the dips is less affected by the current in a certain current range. For three dips, we notice that the mz values are almost identical at a special magnetic field for different currents. At this special magnetic field, the magnetization oscillation modes in the free layer are similar to each other for different currents. The corresponding frequency spectra show that the amplitude of the main frequency peak decreases with the increasing of current due to the enhanced spin-transfer torque. In addition, the frequency shows a blue-shift with the increasing of applied current. Our simulations show that the main frequency f1 corresponding to the highest peak is approximately equal to the precession frequency of the local magnetization in the free layer. Several high-order frequency peaks are also observed in the frequency spectrum with fn=nf1, where n is an integer. Therefore the periodic oscillation of mz is a harmonic oscillation. Further simulations indicate that the dip appearance is also affected by the thickness of free layer. The spin-transfer torque effect decreases with the thickness of the free layer increasing. As a consequence, the dips shift to a low magnetic field range with the increase of the thickness. And for larger thickness t=8.0 nm, no dip appears. This result suggests that the spin-transfer torque is necessary for the dip, rather than the unique effect factor, to occur. In the dip region, the magnetic oscillation modes of the free layer show interesting frequency spectrum characters:harmonic frequency or inter-harmonic frequency. As a consequence, the periodic oscillation of the free layer is accompanied by the harmonic waves.
      Corresponding author: Zhang Hong, zhanghong@sdau.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 51302157, 51201059), the Funding for First-Class Discipline from Shandong Agricultural University, China, the Key Discipline of the National Natural Science Foundation of China, the Natural Science Foundation of Henan Education Department, China (Grant No. 14A140027), and the Fund from Henan University of Technology, China (Grant No. 2014CXRC10).
    [1]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nature Mater. 5 210

    [2]

    Meng H, Wang J P 2006 Appl. Phys. Lett. 88 172506

    [3]

    Mangin S, Henry Y, Ravelosona D, Katine J A, Fullerton E E 2009 Appl. Phys. Lett. 94 012502

    [4]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [5]

    Su H C, Lei H Y, Hu J G 2015 Chin. Phys. B 24 097506

    [6]

    Katine J A, Fullerton Eric E 2008 J. Magn. Magn. Mater. 320 1217

    [7]

    Silva T J, Rippard W H 2008 J. Magn. Magn. Mater. 320 1260

    [8]

    Zhou Y, Zha C L, Bonetti S, Persson J,kerman J 2008 Appl. Phys. Lett. 92 262508

    [9]

    Sbiaa R, Law R, Tan Ei-L, Liew T 2009 J. Appl. Phys. 105 013910

    [10]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417

    [11]

    Lee O J, Pribiag V S, Braganca P M, Gowtham P G, Ralph D C, Buhrman R A 2009 Appl. Phys. Lett. 95 012506

    [12]

    Papusoi C, Delat B, Rodmacq B, Houssameddine D, Michel J P, Ebels U, Sousa R C, Buda-Prejbeanu L, Dieny B 2009 Appl. Phys. Lett. 95 072506

    [13]

    Liu H, Bedau D, Backes D, Katine J A, Langer J, Kent A D 2010 Appl. Phys. Lett. 97 242510

    [14]

    Rowlands G E, Rahman T, Katine J A, Langer J, Lyle A, Zhao H, Alzate J G, Kovalev A A, Tserkovnyak Y, Zeng Z M, Jiang H W, Galatsis K, Huai Y M, Khalili Amiri P, Wang K L, Krivorotov I N, Wang J P 2011 Appl. Phys. Lett. 98 102509

    [15]

    Hou Z W, Zhang Z Z, Zhang J W, Liu Y W 2011 Appl. Phys. Lett. 99 222509

    [16]

    Zhang H, Hou Z W, Zhang J W, Zhang Z Z, Liu Y W 2012 Appl. Phys. Lett. 100 142409

    [17]

    Lin W, Cucchiara J, Berthelot C, Hauet T, Henry Y, Katine J A, Fullerton Eric E, Mangin S 2010 Appl. Phys. Lett. 96 252503

    [18]

    Le Gall S, Cucchiara J, Gottwald M, Berthelot C, Lambert C H, Henry Y, Bedau D, Gopman D B, Liu H, Kent A D, Sun J Z, Lin W, Ravelosona D, Katine J A, Fullerton E E, Mangin S 2012 Phys. Rev. B 86 014419

    [19]

    Reckers N, Cucchiara J, Posth O, Hassel C, Rmer F M, Narkowicz R, Gallardo R A, Landeros P, Zhres H, Mangin S, Katine J A, Fullerton E E, Dumpich G, Meckenstock R, Lindner J, Farle M 2011 Phys. Rev. B 83 184427

    [20]

    Thiaville A, Rohart S, Ju E, Cros V, Fert A 2012 Europhys. Lett. 100 57002

    [21]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotechnol. 8 527

    [22]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611

    [23]

    Lin W W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [24]

    Rippard W H, Deac A M, Pufall M R, Shaw J M, Keller M W, Russek S E, Bauer G E W, Serpico C 2010 Phys. Rev. B 81 014426

    [25]

    Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Akerman J 2011 Phys. Status Solidi RRL 5 432

    [26]

    Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A, Akerman J 2013 Science 339 1295

    [27]

    Xiao D, Tiberkevich V, Liu Y H, Liu Y W, Mohseni S M, Chung S, Ahlberg M, Slavin A N,kerman J, Zhou Y 2017 Phys. Rev. B 95 024106

    [28]

    Zhang H, Lin W W, Mangin S, Zhang Z Z, Liu Y W 2013 Appl. Phys. Lett. 102 012411

    [29]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133

    [30]

    Slonczewski J C 1999 J. Magn. Magn. Mater. 195 L261

    [31]

    Li X, Zhang Z Z, Jin Q Y, Liu Y 2008 Appl. Phys. Lett. 92 122502

  • [1]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nature Mater. 5 210

    [2]

    Meng H, Wang J P 2006 Appl. Phys. Lett. 88 172506

    [3]

    Mangin S, Henry Y, Ravelosona D, Katine J A, Fullerton E E 2009 Appl. Phys. Lett. 94 012502

    [4]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [5]

    Su H C, Lei H Y, Hu J G 2015 Chin. Phys. B 24 097506

    [6]

    Katine J A, Fullerton Eric E 2008 J. Magn. Magn. Mater. 320 1217

    [7]

    Silva T J, Rippard W H 2008 J. Magn. Magn. Mater. 320 1260

    [8]

    Zhou Y, Zha C L, Bonetti S, Persson J,kerman J 2008 Appl. Phys. Lett. 92 262508

    [9]

    Sbiaa R, Law R, Tan Ei-L, Liew T 2009 J. Appl. Phys. 105 013910

    [10]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417

    [11]

    Lee O J, Pribiag V S, Braganca P M, Gowtham P G, Ralph D C, Buhrman R A 2009 Appl. Phys. Lett. 95 012506

    [12]

    Papusoi C, Delat B, Rodmacq B, Houssameddine D, Michel J P, Ebels U, Sousa R C, Buda-Prejbeanu L, Dieny B 2009 Appl. Phys. Lett. 95 072506

    [13]

    Liu H, Bedau D, Backes D, Katine J A, Langer J, Kent A D 2010 Appl. Phys. Lett. 97 242510

    [14]

    Rowlands G E, Rahman T, Katine J A, Langer J, Lyle A, Zhao H, Alzate J G, Kovalev A A, Tserkovnyak Y, Zeng Z M, Jiang H W, Galatsis K, Huai Y M, Khalili Amiri P, Wang K L, Krivorotov I N, Wang J P 2011 Appl. Phys. Lett. 98 102509

    [15]

    Hou Z W, Zhang Z Z, Zhang J W, Liu Y W 2011 Appl. Phys. Lett. 99 222509

    [16]

    Zhang H, Hou Z W, Zhang J W, Zhang Z Z, Liu Y W 2012 Appl. Phys. Lett. 100 142409

    [17]

    Lin W, Cucchiara J, Berthelot C, Hauet T, Henry Y, Katine J A, Fullerton Eric E, Mangin S 2010 Appl. Phys. Lett. 96 252503

    [18]

    Le Gall S, Cucchiara J, Gottwald M, Berthelot C, Lambert C H, Henry Y, Bedau D, Gopman D B, Liu H, Kent A D, Sun J Z, Lin W, Ravelosona D, Katine J A, Fullerton E E, Mangin S 2012 Phys. Rev. B 86 014419

    [19]

    Reckers N, Cucchiara J, Posth O, Hassel C, Rmer F M, Narkowicz R, Gallardo R A, Landeros P, Zhres H, Mangin S, Katine J A, Fullerton E E, Dumpich G, Meckenstock R, Lindner J, Farle M 2011 Phys. Rev. B 83 184427

    [20]

    Thiaville A, Rohart S, Ju E, Cros V, Fert A 2012 Europhys. Lett. 100 57002

    [21]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotechnol. 8 527

    [22]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611

    [23]

    Lin W W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [24]

    Rippard W H, Deac A M, Pufall M R, Shaw J M, Keller M W, Russek S E, Bauer G E W, Serpico C 2010 Phys. Rev. B 81 014426

    [25]

    Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Akerman J 2011 Phys. Status Solidi RRL 5 432

    [26]

    Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A, Akerman J 2013 Science 339 1295

    [27]

    Xiao D, Tiberkevich V, Liu Y H, Liu Y W, Mohseni S M, Chung S, Ahlberg M, Slavin A N,kerman J, Zhou Y 2017 Phys. Rev. B 95 024106

    [28]

    Zhang H, Lin W W, Mangin S, Zhang Z Z, Liu Y W 2013 Appl. Phys. Lett. 102 012411

    [29]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133

    [30]

    Slonczewski J C 1999 J. Magn. Magn. Mater. 195 L261

    [31]

    Li X, Zhang Z Z, Jin Q Y, Liu Y 2008 Appl. Phys. Lett. 92 122502

  • [1] Huang Ming-Xian, Hu Wen-Bin, Bai Fei-Ming. Surface acoustic wave-spin wave coupling and magneto-acoustic nonreciprocal devices. Acta Physica Sinica, 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [2] Liu Xiang, Wang Xi-Guang, Li Zhi-Xiong, Guo Guang-Hua. Left-handed polarized spin waves induced by spin polarized electric currents in ferromagnetic domain walls. Acta Physica Sinica, 2024, 73(14): 147501. doi: 10.7498/aps.73.20240651
    [3] Wang Ke-Xin, Su Li, Tong Liang-Le. Analysis of spin-orbit torque magnetic tunnel junction model without external magnetic field assistance based on antiferromagnetism. Acta Physica Sinica, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [4] Guo Xiao-Qing, Wang Qiang, Xue Hai-Bin. Field-like torque-induced tunable zero-field spin-torque nano-oscillator. Acta Physica Sinica, 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [5] Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque. Acta Physica Sinica, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [6] Jin Dong-Yue, Cao Lu-Ming, Wang You, Jia Xiao-Xue, Pan Yong-An, Zhou Yu-Xin, Lei Xin, Liu Yuan-Yuan, Yang Ying-Qi, Zhang Wan-Rong. Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application. Acta Physica Sinica, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [7] Yan Jian, Ren Zhi-Wei, Zhong Zhi-Yong. Spin waves in Y3Fe5O12-CoFeB spin-wave directional coupler. Acta Physica Sinica, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [8] Li Zai-Dong, Guo Qi-Qi. Rogue wave solution in ferromagnetic nanowires. Acta Physica Sinica, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [9] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [10] Zhang Nan, Zhang Bao, Yang Mei-Yin, Cai Kai-Ming, Sheng Yu, Li Yu-Cai, Deng Yong-Cheng, Wang Kai-You. Progress of electrical control magnetization reversal and domain wall motion. Acta Physica Sinica, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [11] Wang Ri-Xing, Ye Hua, Wang Li-Juan, Ao Zhang-Hong. Magnetization reversal and precession in spin valve structures with a perpendicular free layer and a tilted polarizer layer. Acta Physica Sinica, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [12] Lü Gang, Cao Xue-Cheng, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei, Zhang Hong. Azimuthal spin wave modes in an elliptical nanomagnet with single vortex configuration. Acta Physica Sinica, 2015, 64(21): 217501. doi: 10.7498/aps.64.217501
    [13] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [14] Hou Xiao-Juan, Yun Guo-Hong, Bai Yu-Hao, Bai Narsu, Zhou Wen-Ping. The eigenvalues of quantized spin waves and theeffect of the uniaxial anisotropy. Acta Physica Sinica, 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [15] Jin Wei, Wan Zhen-Mao, Liu Yao-Wen. Nonlinear magnetization dynamics excited by the spin-transfer torque effect. Acta Physica Sinica, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [16] Zhao Xing-Dong, Xie Zheng-Wei, Zhang Wei-Ping. Nonlinear spin waves in a Bose condensed atomic chain. Acta Physica Sinica, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [17] DAI SONG-TAO, LI ZHEN-YA. SPIN WAVES IN TRANSVERSE ISING FERRO-MAGNETIC FILMS. Acta Physica Sinica, 1990, 39(4): 639-648. doi: 10.7498/aps.39.639
    [18] ZHONG JIAN. SPIN WAVE SPECTRUM IN HEISENBERG ANTIFERRO-MAGNETIC SUPERLATTICES. Acta Physica Sinica, 1990, 39(3): 486-490. doi: 10.7498/aps.39.486
    [19] KUANG YU-PING, WENG SHI-CHUN. THE SPIN WAVE THEORY OF FERROMAGNETIC ANISOTROPY IN CUBIC CRYSTALS. Acta Physica Sinica, 1964, 20(9): 890-908. doi: 10.7498/aps.20.890
    [20] YU LUH. 铁磁金属的表面阻抗与自旋波共振. Acta Physica Sinica, 1964, 20(7): 607-623. doi: 10.7498/aps.20.607
Metrics
  • Abstract views:  5478
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2018
  • Accepted Date:  05 June 2018
  • Published Online:  05 September 2018

/

返回文章
返回
Baidu
map