Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Crystal structures and physical properties of novel 4d/5d based superconductors

Song Yan-Peng Chen Hong-Xiang Guo Jian-Gang Chen Xiao-Long

Citation:

Crystal structures and physical properties of novel 4d/5d based superconductors

Song Yan-Peng, Chen Hong-Xiang, Guo Jian-Gang, Chen Xiao-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The interplay among spin, orbital and lattice in a strongly-correlated electron system attracts a lot of attention in the community of condensed matter physics. The competition and collaboration of these effects result in multiple ground states, such as superconductivity, quantum criticality state, topological phase transition, metallic-insulating transition, etc. As is well known, the spin-orbital coupling is an interaction between the spin angular moment and orbit angular moment. In quantum mechanics, the spin-orbital coupling can be described as an additional interaction in the Hamitonian. For a compound containing heavy elements, the spin-orbital interaction becomes nontrival and can influence the ground states. For instance, in 4d/5d based superconductors, the superconducting pairing mechanism might be significantly different from that of conventional Bardeen-Cooper-Schrieffer superconductor. In this paper, we will summarize the structures and physical properties of several typical 4d/5d transition metal-based superconductors and discuss the intrinsic relationship between them. Importantly, the strength of anionic covalent bonds can determine the phase transition and superconductivity, which will be highlighted here.
      Corresponding author: Guo Jian-Gang, jgguo@iphy.ac.cn;xlchen@iphy.ac.cn ; Chen Xiao-Long, jgguo@iphy.ac.cn;xlchen@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772322).
    [1]

    Kim B J, Yu J, Koh H 2006 Phys. Rev. Lett. 97 106401

    [2]

    Baumberger F, Ingle N J C, Meevasana W 2006 Phys. Rev. Lett. 96 246402

    [3]

    Maeno Y, Hashimoto H, Yoshida K 1994 Nature 372 532

    [4]

    Lee D, Lee H N 2017 Materials 10 368

    [5]

    Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y, Maeno Y 1998 Nature 396 658

    [6]

    Huo J W, Rice T M, Zhang F C 2013 Phys. Rev. Lett. 110 167003

    [7]

    Lee D M 1997 Rev. Mod. Phys. 69 645

    [8]

    Nishiyama M, Inada Y, Zheng G 2007 Phys. Rev. Lett. 98 047002

    [9]

    Okamoto Y, Nohara M, Aruga-Katori H 2007 Phys. Rev. Lett. 99 137207

    [10]

    Cao G, Durairaj V, Chikara S 2007 Phys. Rev. B 76 100402

    [11]

    Cui Q, Cheng J G, Fan W 2016 Phys. Rev. Lett. 117 176603

    [12]

    Wan X, Turner A M 2011 Phys. Rev. B 83 205101

    [13]

    Tomiyasu K, Matsuhira K, Iwasa K 2012 J. Phys. Soc. Jpn. 81 034709

    [14]

    Disseler S M, Dhital C, Hogan T C 2012 Phys. Rev. B 85 174441

    [15]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [16]

    Mitchell J F 2015 APL Mater. 3 062404

    [17]

    Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett. 113 177003

    [18]

    Kim B J, Jin H, Moon S J 2008 Phys. Rev. Lett. 101 076402

    [19]

    Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518

    [20]

    Kim Y K, Krupin O, Denlinger J D, Bostwick A, Rotenberg E, Zhao Q, Kim B J 2014 Science 125 1151

    [21]

    Kim Y K, Sung N H, Denlinger J D 2016 Nat. Phys. 12 37

    [22]

    Yan Y J, Ren M Q, Xu H C, Xie B P, Tao R, Choi H Y, Lee N, Choi Y J, Zhang T, Feng D L 2015 Phys. Rev. X 5 041018

    [23]

    Rossnagel K 2011 J. Phys. Condens. Matter 23 213001

    [24]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193

    [25]

    Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L, Tutis E 2008 Nat. Mater. 7 960

    [26]

    Ang R, Miyata Y, Ieki E 2013 Phys. Rev. B 88 115145

    [27]

    Di Salvo F J, Schwall R, Geballe T H 1971 Phys. Rev. Lett. 27 310

    [28]

    Morris R C, Coleman R V 1973 Phys. Rev. B 7 991

    [29]

    Ang R, Tanaka Y, Ieki E 2012 Phys. Rev. Lett. 109 176403

    [30]

    Yu Y, Yang F, Lu X F 2015 Nat. Nanotechnol. 10 270

    [31]

    Dunnill C W, Edwards H K, Brown P D 2006 Angew. Chem. Int. Ed. Engl. 45 7060

    [32]

    Tsang J C, Shafer M W, Crowder B L 1975 Phys. Rev. B 11 155

    [33]

    Morosan E, Zandbergen H W, Dennis B S 2006 Nat. Phys. 2 544

    [34]

    Pascut G L, Haule K, Gutmann M J, Barnett S A, Bombardi A, Artyukhin S, Birol T, Vanderbilt D, Yang J J, Cheong S W, Kiryukhin V 2014 Phys. Rev. Lett. 112 086402

    [35]

    Yang J J, Choi Y J, Oh Y S 2012 Phys. Rev. Lett. 108 116402

    [36]

    Fang A F, Xu G, Dong T 2013 Sci. Rep. 3 1153

    [37]

    Oh Y S, Yang J J, Horibe Y 2013 Phys. Rev. Lett. 110 127209

    [38]

    Kamihara Y, Watanabe T, Hirano M 2008 J. Am. Chem. Soc. 130 3296

    [39]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [40]

    Yoshida M, Kudo K, Nohara M, Iwasa Y 2018 Nano Lett. 18 3113

    [41]

    Pyon S, Kudo K, Nohara M 2012 J. Phys. Soc. Jpn. 81 053701

    [42]

    Qi Y, Matsuishi S, Guo J 2012 Phys. Rev. Lett. 109 217002

    [43]

    Guo J, Qi Y, Matsuishi S 2012 J. Am. Chem. Soc. 134 20001

    [44]

    Guo J, Qi Y, Hosono H 2013 Phys. Rev. B 87 224504

    [45]

    Qi Y, Lei H, Guo J 2017 J. Am. Chem. Soc. 139 8106

    [46]

    Schutte W J, De Boer J L 1988 Acta Crystallogr. Sect. B 44 486

    [47]

    Kudo K, Ishii H, Takasuga M 2013 J. Phys. Soc. Jpn. 82 063704

    [48]

    Reithmayer K, Steurer W, Schulz H 1993 Acta Crystallogr. Sect. B 49 6

    [49]

    Kitagawa S, Kotegawa H, Tou H 2013 J. Phys. Soc. Jpn. 82 113704

    [50]

    Luo H L, Klement Jr W 1962 J. Chem. Phys. 36 1870

    [51]

    Duwez P, Willens R H, Klement Jr W 1960 J. Appl. Phys. 31 1136

    [52]

    Tsuei C C, Newkirk L R 1969 Phys. Rev. 183 619

    [53]

    Guo J G, Chen X, Jia X Y 2017 Nat. Commun. 8 871

  • [1]

    Kim B J, Yu J, Koh H 2006 Phys. Rev. Lett. 97 106401

    [2]

    Baumberger F, Ingle N J C, Meevasana W 2006 Phys. Rev. Lett. 96 246402

    [3]

    Maeno Y, Hashimoto H, Yoshida K 1994 Nature 372 532

    [4]

    Lee D, Lee H N 2017 Materials 10 368

    [5]

    Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y, Maeno Y 1998 Nature 396 658

    [6]

    Huo J W, Rice T M, Zhang F C 2013 Phys. Rev. Lett. 110 167003

    [7]

    Lee D M 1997 Rev. Mod. Phys. 69 645

    [8]

    Nishiyama M, Inada Y, Zheng G 2007 Phys. Rev. Lett. 98 047002

    [9]

    Okamoto Y, Nohara M, Aruga-Katori H 2007 Phys. Rev. Lett. 99 137207

    [10]

    Cao G, Durairaj V, Chikara S 2007 Phys. Rev. B 76 100402

    [11]

    Cui Q, Cheng J G, Fan W 2016 Phys. Rev. Lett. 117 176603

    [12]

    Wan X, Turner A M 2011 Phys. Rev. B 83 205101

    [13]

    Tomiyasu K, Matsuhira K, Iwasa K 2012 J. Phys. Soc. Jpn. 81 034709

    [14]

    Disseler S M, Dhital C, Hogan T C 2012 Phys. Rev. B 85 174441

    [15]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [16]

    Mitchell J F 2015 APL Mater. 3 062404

    [17]

    Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett. 113 177003

    [18]

    Kim B J, Jin H, Moon S J 2008 Phys. Rev. Lett. 101 076402

    [19]

    Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518

    [20]

    Kim Y K, Krupin O, Denlinger J D, Bostwick A, Rotenberg E, Zhao Q, Kim B J 2014 Science 125 1151

    [21]

    Kim Y K, Sung N H, Denlinger J D 2016 Nat. Phys. 12 37

    [22]

    Yan Y J, Ren M Q, Xu H C, Xie B P, Tao R, Choi H Y, Lee N, Choi Y J, Zhang T, Feng D L 2015 Phys. Rev. X 5 041018

    [23]

    Rossnagel K 2011 J. Phys. Condens. Matter 23 213001

    [24]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193

    [25]

    Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L, Tutis E 2008 Nat. Mater. 7 960

    [26]

    Ang R, Miyata Y, Ieki E 2013 Phys. Rev. B 88 115145

    [27]

    Di Salvo F J, Schwall R, Geballe T H 1971 Phys. Rev. Lett. 27 310

    [28]

    Morris R C, Coleman R V 1973 Phys. Rev. B 7 991

    [29]

    Ang R, Tanaka Y, Ieki E 2012 Phys. Rev. Lett. 109 176403

    [30]

    Yu Y, Yang F, Lu X F 2015 Nat. Nanotechnol. 10 270

    [31]

    Dunnill C W, Edwards H K, Brown P D 2006 Angew. Chem. Int. Ed. Engl. 45 7060

    [32]

    Tsang J C, Shafer M W, Crowder B L 1975 Phys. Rev. B 11 155

    [33]

    Morosan E, Zandbergen H W, Dennis B S 2006 Nat. Phys. 2 544

    [34]

    Pascut G L, Haule K, Gutmann M J, Barnett S A, Bombardi A, Artyukhin S, Birol T, Vanderbilt D, Yang J J, Cheong S W, Kiryukhin V 2014 Phys. Rev. Lett. 112 086402

    [35]

    Yang J J, Choi Y J, Oh Y S 2012 Phys. Rev. Lett. 108 116402

    [36]

    Fang A F, Xu G, Dong T 2013 Sci. Rep. 3 1153

    [37]

    Oh Y S, Yang J J, Horibe Y 2013 Phys. Rev. Lett. 110 127209

    [38]

    Kamihara Y, Watanabe T, Hirano M 2008 J. Am. Chem. Soc. 130 3296

    [39]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [40]

    Yoshida M, Kudo K, Nohara M, Iwasa Y 2018 Nano Lett. 18 3113

    [41]

    Pyon S, Kudo K, Nohara M 2012 J. Phys. Soc. Jpn. 81 053701

    [42]

    Qi Y, Matsuishi S, Guo J 2012 Phys. Rev. Lett. 109 217002

    [43]

    Guo J, Qi Y, Matsuishi S 2012 J. Am. Chem. Soc. 134 20001

    [44]

    Guo J, Qi Y, Hosono H 2013 Phys. Rev. B 87 224504

    [45]

    Qi Y, Lei H, Guo J 2017 J. Am. Chem. Soc. 139 8106

    [46]

    Schutte W J, De Boer J L 1988 Acta Crystallogr. Sect. B 44 486

    [47]

    Kudo K, Ishii H, Takasuga M 2013 J. Phys. Soc. Jpn. 82 063704

    [48]

    Reithmayer K, Steurer W, Schulz H 1993 Acta Crystallogr. Sect. B 49 6

    [49]

    Kitagawa S, Kotegawa H, Tou H 2013 J. Phys. Soc. Jpn. 82 113704

    [50]

    Luo H L, Klement Jr W 1962 J. Chem. Phys. 36 1870

    [51]

    Duwez P, Willens R H, Klement Jr W 1960 J. Appl. Phys. 31 1136

    [52]

    Tsuei C C, Newkirk L R 1969 Phys. Rev. 183 619

    [53]

    Guo J G, Chen X, Jia X Y 2017 Nat. Commun. 8 871

  • [1] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [2] Wang Zhi-Mei, Wang Hong, Xue Nai-Tao, Cheng Gao-Yan. Quantum coherence in spin-orbit coupled quantum dots system. Acta Physica Sinica, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [3] Wang Kun, Qiao Ying-Jie, Zhang Xiao-Hong, Wang Xiao-Dong, Zheng Ting, Bai Cheng-Ying, Zhang Yi-Ming, Du Shi-Yu. First-principles study of effect of ideal tensile/shear strain on chemical bond length and charge density distribution of U3Si2. Acta Physica Sinica, 2022, 71(22): 227102. doi: 10.7498/aps.71.20221210
    [4] Chen Xing, Xue Xiao-Bo, Zhang Sheng-Kang, Ma Yu-Quan, Fei Peng, Jiang Yuan, Ge Jun. Ground energy level transition for two-body interacting Fermionic system with spin-orbit coupling and Zeeman interaction. Acta Physica Sinica, 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [5] Zhang Ai-Xia, Jiang Yan-Fang, Xue Ju-Kui. Nonlinear energy band structure of spin-orbit coupled Bose-Einstein condensates in optical lattice. Acta Physica Sinica, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [6] Xue Hai-Bin, Duan Zhi-Lei, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through Su-Schrieffer-Heeger chain with spin-orbit coupling. Acta Physica Sinica, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [7] Shi Ting-Ting, Wang Liu-Jiu, Wang Jing-Kun, Zhang Wei. Some recent progresses on the study of ultracold quantum gases with spin-orbit coupling. Acta Physica Sinica, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [8] Liang Tao, Li Ming. Integer quantum Hall effect in a spin-orbital coupling system. Acta Physica Sinica, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [9] Li Zhi-Qiang, Wang Yue-Ming. One-dimensional spin-orbit coupling Bose gases with harmonic trapping. Acta Physica Sinica, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [10] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [11] Liu Sheng-Li, Li Jian-Zheng, Cheng Jie, Wang Hai-Yun, Li Yong-Tao, Zhang Hong-Guang, Li Xing-Ao. Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4. Acta Physica Sinica, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [12] Chen Dong-Hai, Yang Mou, Duan Hou-Jian, Wang Rui-Qiang. Electronic transport properties of graphene pn junctions with spin-orbit coupling. Acta Physica Sinica, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [13] Chen Guang-Ping. Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential. Acta Physica Sinica, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [14] Gong Shi-Jing, Duan Chun-Gang. Recent progress in Rashba spin orbit coupling on metal surface. Acta Physica Sinica, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [15] Zhang Lei, Li Hui-Wu, Hu Liang-Bin. Study of stability of persistent spin helix in two-dimensional electron gases with spin-orbit coupling. Acta Physica Sinica, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [16] Dong Quan-Li, Zhang Jie, Yang Jie, Jiang Zhao-Tan. Electronic energy band structures of carbon nanotubeswith spin-orbit coupling interaction. Acta Physica Sinica, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [17] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [18] Shi Li-Bin, Ren Jun-Yuan, Zhang Feng-Yun, Zhang Guo-Hua, Yu Zeng-Qiang. A study on resistive transition and anisotropy of MgB2/Al2O3 superconducting thin films. Acta Physica Sinica, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [19] Wu Bai-Mei, Li Bo, Yang Dong-Sheng, Zheng Wei-Hua, Li Shi-Yan, Cao Lie-Zhao, Chen Xian-Hui. The thermal/electronic transport properties of new superconductor MgB2 and MgCNi3. Acta Physica Sinica, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
    [20] XIONG HAN, CHE GUANG-CAN, YAO YU-SHU, NI YONG-MING, DONG CHENG, JIA SHUN-LIAN. HIGH PRESSURE SYNTHESIS OF Ca DOPED (RPr)-123 SUPERCONDUCTORS. Acta Physica Sinica, 2001, 50(9): 1783-1786. doi: 10.7498/aps.50.1783
Metrics
  • Abstract views:  7752
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2018
  • Accepted Date:  06 May 2018
  • Published Online:  20 June 2019

/

返回文章
返回
Baidu
map