Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and experimental investigation of light guidance in hollow-core anti-resonant fiber

Ding Wei Wang Ying-Ying Gao Shou-Fei Hong Yi-Feng Wang Pu

Citation:

Theoretical and experimental investigation of light guidance in hollow-core anti-resonant fiber

Ding Wei, Wang Ying-Ying, Gao Shou-Fei, Hong Yi-Feng, Wang Pu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The inherent material imperfections of solid core optical fiber, for example, Kerr nonlinearity, chromatic dispersion, Rayleigh scattering and photodarkening, set fundamental limitations for further improving the performances of fiber-based systems. Hollow-core fiber (HCF) allows the light to be guided in an air core with many unprecedented characteristics, overcoming almost all the shortcomings arising from bulk material. The exploitation of HCF could revolutionize the research fields ranging from ultra-intense pulse delivery, single-cycle pulse generation, nonlinear optics, low latency optical communication, UV light sources, mid-IR gas lasers to biochemical sensing, quantum optics and mid-IR to Terahertz waveguides. Therefore, the investigations into the guidance mechanism and the ultimate limit of HCF have become a hot research topic. In the past two decades, scientists and engineers have fabricated two types of high-performance HCFs with loss figures of 1.7 dB/km and 7.7 dB/km for hollow-core photonic bandgap fiber (HC-PBGF) and hollow-core anti-resonant fiber (HC-ARF) respectively. In comparison with the twenty-years-old HC-PBGF technology, the HC-ARF that recently appeared outperforms the former in terms of broadband transmission and high laser damage threshold together with a quickly-improved loss figure, providing an ideal platform for many more challenging applications. While the guidance mechanism and fabrication technique in HC-PBGF have been well recognized, the HC-ARF still has a lot of room for improvement. At the birth of the first generation of broadband HC-ARF, the guidance mechanism was unclear, the fiber design was far from perfect, the fabrication was immature, and the optical properties were not optimized. In the past five years, we have developed an intuitive and semi-analytical model for the confinement loss of HC-ARF and managed to fabricate high-performance nodeless HC-ARF. We further employ our theoretical model and fabrication technique to well control and design other interesting properties, such as polarization maintenance and bending loss in HC-ARF. For a long time, the anti-resonant theory of light guidance has been regarded as being qualitative, and the leaky-mode-based HC-ARF have been considered to have worse performances than the guided-mode-based HC-PBGF. Our investigations in theory and experiment negative these prejudices, thus paving the way for the booming development of HC-ARF technologies in the near future.
      Corresponding author: Ding Wei, wding@iphy.ac.cn;wangyingying@bjut.edu.cn ; Wang Ying-Ying, wding@iphy.ac.cn;wangyingying@bjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303800) and the National Natural Science Foundation of China (Grant Nos. 61575218, 61675011, 61527822, 61535009).
    [1]

    Kao K C, Hockham A 1966 Proc. IEEE 113 1151

    [2]

    Russel P St J 2003 Science 299 358

    [3]

    Born M, Wolf E 1999 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (6th Ed.) (Cambridge:Cambridge University Press) pp47-50

    [4]

    Maier S A 2007 Plasmonics:Fundamentals and Applications (New York:Springer) pp11-15

    [5]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [6]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals:Molding the Flow of Light (2nd Ed.) (Princeton:Princeton University) pp156-189

    [7]

    Birks T A, Roberts P J, Russell P St J, Atkin D M, Shepherd T J 1995 Electron. Lett. 31 1941

    [8]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [9]

    Knight J C 2003 Nature 424 847

    [10]

    Johnson S G, Ibanescu M, Skorobogatiy M, Weisberg O, Engeness T D, Soljačić M, Jacobs S A, Joannopoulos J D, Fink Y 2001 Opt. Express 9 748

    [11]

    Roberts P, Couny F, Sabert H, Mangan B, Williams D, Farr L, Mason M, Tomlinson A, Birks T, Knight J C, Russell P St J 2005 Opt. Express 13 236

    [12]

    Duguay M A, Kokubun Y, Koch T L, Pfeiffer L 1986 Appl. Phys. Lett. 49 13

    [13]

    Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J 2002 Opt. Lett. 27 1592

    [14]

    Benabid F, Roberts P J 2011 J. Mod. Opt. 58 87

    [15]

    Poletti F, Petrovich M N, Richardson D J 2013 Nanophotonics 2 315

    [16]

    Birks T A, Bird D M, Hedley T D, Pottage J M, Russell P St J 2004 Opt. Express 12 69

    [17]

    Pottage J M, Bird D M, Hedley T D, Birks T A, Knight J C, Russell P St J, Roberts P J 2003 Opt. Express 11 2854

    [18]

    Ferrarini D, Vincetti L, Zoboli M, Cucinotta A, Selleri S 2002 Opt. Express 10 1314

    [19]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, de Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322

    [20]

    Aghaie K Z, Fan S H, Digonnet M J F 2010 IEEE J. Quantum Elect. 46 920

    [21]

    Yeh P, Yariv A, Marom E 1978 J. Opt. Soc. Am. 68 1196

    [22]

    Marcatili E, Schmeltzer R 1964 Bell Syst. Tech. J. 43 1783

    [23]

    Temelkuran B, Hart S D, Benoit G, Joannopoulos J, Fink Y 2002 Nature 420 650

    [24]

    Mangan B, Farr L, Langford A, Roberts P J, Williams D P, Couny F, Lawman M, Mason M, Coupland S, Flea R, Sabert H, Birks T A, Knight J C, Russell P St J 2004 Optical Fiber Communication Conference Los Angeles, February 23-27, PD24

    [25]

    Ding W, Wang Y Y 2014 Opt. Express 22 27242

    [26]

    Ding W, Wang Y Y 2015 Front. Phys. 3 16

    [27]

    Wang Y Y, Ding W 2017 Opt. Express 25 33122

    [28]

    Gao S F, Wang Y Y, Ding W, Wang P 2018 Opt. Lett. 43 1347

    [29]

    Gao S F, Wang Y Y, Liu X L, Hong C, Gu S, Wang P 2017 Opt. Lett. 42 61

    [30]

    Gao S F, Wang Y Y, Liu X L, Ding W, Wang P 2016 Opt. Express 24 14801

    [31]

    Cao L, Gao S F, Peng Z G, Wang X C, Wang Y Y, Wang P 2018 Opt. Express 26 5609

    [32]

    Ding W, Wang Y Y 2015 Opt. Express 23 21165

    [33]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J, Allan D C 1999 Science 285 1537

    [34]

    Marcuse D 1991 Theory of Dielectric Optical Waveguides (2nd Ed.) (London:Academic Press) pp7-19

    [35]

    Michieletto M, Lyngs J K, Jakobsen C, Lgsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103

    [36]

    Uebel P, Gnendi M C, Frosz M H, Ahmed G, Edavalath N N, Mnard J-M, Russell P St J 2016 Opt. Lett. 41 1961

    [37]

    Hayes J R, Sandoghchi S R, Bradley T D, Liu Z, Slavik R, Gouveia M A, Wheeler N V, Jasion G, Chen Y, Fokoua E N, Petrovich M N, Richardson D J, Poletti F 2017 J. Lightwave Technol. 35 437

    [38]

    Chafer M, Delahaye F, Amrani F, Debord B, Grme F, Benabid F 2018 Conference on Lasers and Electro-Optics San Jose, May 13-18, paper SF1K.3

    [39]

    Liu X L, Ding W, Wang Y Y, Gao S F, Cao L, Feng X, Wang P 2017 Opt. Lett. 42 863

    [40]

    Vincetti L, Setti V 2012 Opt. Express 20 14350

    [41]

    Gao S F, Wang Y Y, Liu X L, Gu S, Peng Z G, Wang P, Du K M 2017 Chin. J. Lasers 44 0201012

    [42]

    Roberts P J, Williams D P, Sabert H, Mangan B J, Bird D M, Birks T A, Knight J C, Russell P St J 2006 Opt. Express 14 7329

    [43]

    Fini J M, Nicholson J W, Mangan B, Meng L, Windeler R S, Monberg E M, DeSantolo A, DiMarcello F V, Mukasa K 2014 Nat. Commun. 5 5085

    [44]

    Haakestad M W, Skaar J 2005 Opt. Express 13 9922

    [45]

    Vincetti L, Setti V 2010 Opt. Express 18 23133

    [46]

    Olszewski J, Szpulak M, Urbańczyk W 2005 Opt. Express 13 6015

    [47]

    Debord B, Alharbi M, Vincetti L, Husakou A, Fourcade-Dutin C, Hoenninger C, Mottay E, Grme F, Benabid F 2014 Opt. Express 22 10735

    [48]

    Elu U, Baudisch M, Pires H, Tani F, Frosz M H, Kttig F, Ermolov A, Russell P St J, Biegert J 2017 Optica 4 1024

    [49]

    Balciunas T, Fourcade-Dutin C, Fan G, Witting T, Voronin A A, Zheltikov A M, Gerome F, Paulus G G, Baltuska A, Benabid F 2015 Nat. Commun. 6 6117

    [50]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavk R, Richardson D J 2013 Nat. Photon. 7 279

    [51]

    Kttig F, Tani F, Biersach C M, Travers J C, Russell P St J 2017 Optica 4 1272

    [52]

    Hassan M R A, Yu F, Wadsworth W J, Knight J C 2016 Optica 3 218

    [53]

    Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629

    [54]

    Okaba S, Takano T, Benabid F, Bradley T, Vincetti L, Maizelis Z, Yampol'skii V, Nori F, Katori H 2014 Nat. Commun. 5 4096

    [55]

    Sprague M R, Michelberger P S, Champion T F M, England D G, Nunn J, Jin X M, Kolthammer W S, Abdolvand A, Russell P St J, Walmsley I A 2014 Nat. Photon. 8 287

    [56]

    Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L, Liu W 2016 Opt. Express 24 22454

  • [1]

    Kao K C, Hockham A 1966 Proc. IEEE 113 1151

    [2]

    Russel P St J 2003 Science 299 358

    [3]

    Born M, Wolf E 1999 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (6th Ed.) (Cambridge:Cambridge University Press) pp47-50

    [4]

    Maier S A 2007 Plasmonics:Fundamentals and Applications (New York:Springer) pp11-15

    [5]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [6]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals:Molding the Flow of Light (2nd Ed.) (Princeton:Princeton University) pp156-189

    [7]

    Birks T A, Roberts P J, Russell P St J, Atkin D M, Shepherd T J 1995 Electron. Lett. 31 1941

    [8]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [9]

    Knight J C 2003 Nature 424 847

    [10]

    Johnson S G, Ibanescu M, Skorobogatiy M, Weisberg O, Engeness T D, Soljačić M, Jacobs S A, Joannopoulos J D, Fink Y 2001 Opt. Express 9 748

    [11]

    Roberts P, Couny F, Sabert H, Mangan B, Williams D, Farr L, Mason M, Tomlinson A, Birks T, Knight J C, Russell P St J 2005 Opt. Express 13 236

    [12]

    Duguay M A, Kokubun Y, Koch T L, Pfeiffer L 1986 Appl. Phys. Lett. 49 13

    [13]

    Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J 2002 Opt. Lett. 27 1592

    [14]

    Benabid F, Roberts P J 2011 J. Mod. Opt. 58 87

    [15]

    Poletti F, Petrovich M N, Richardson D J 2013 Nanophotonics 2 315

    [16]

    Birks T A, Bird D M, Hedley T D, Pottage J M, Russell P St J 2004 Opt. Express 12 69

    [17]

    Pottage J M, Bird D M, Hedley T D, Birks T A, Knight J C, Russell P St J, Roberts P J 2003 Opt. Express 11 2854

    [18]

    Ferrarini D, Vincetti L, Zoboli M, Cucinotta A, Selleri S 2002 Opt. Express 10 1314

    [19]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, de Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322

    [20]

    Aghaie K Z, Fan S H, Digonnet M J F 2010 IEEE J. Quantum Elect. 46 920

    [21]

    Yeh P, Yariv A, Marom E 1978 J. Opt. Soc. Am. 68 1196

    [22]

    Marcatili E, Schmeltzer R 1964 Bell Syst. Tech. J. 43 1783

    [23]

    Temelkuran B, Hart S D, Benoit G, Joannopoulos J, Fink Y 2002 Nature 420 650

    [24]

    Mangan B, Farr L, Langford A, Roberts P J, Williams D P, Couny F, Lawman M, Mason M, Coupland S, Flea R, Sabert H, Birks T A, Knight J C, Russell P St J 2004 Optical Fiber Communication Conference Los Angeles, February 23-27, PD24

    [25]

    Ding W, Wang Y Y 2014 Opt. Express 22 27242

    [26]

    Ding W, Wang Y Y 2015 Front. Phys. 3 16

    [27]

    Wang Y Y, Ding W 2017 Opt. Express 25 33122

    [28]

    Gao S F, Wang Y Y, Ding W, Wang P 2018 Opt. Lett. 43 1347

    [29]

    Gao S F, Wang Y Y, Liu X L, Hong C, Gu S, Wang P 2017 Opt. Lett. 42 61

    [30]

    Gao S F, Wang Y Y, Liu X L, Ding W, Wang P 2016 Opt. Express 24 14801

    [31]

    Cao L, Gao S F, Peng Z G, Wang X C, Wang Y Y, Wang P 2018 Opt. Express 26 5609

    [32]

    Ding W, Wang Y Y 2015 Opt. Express 23 21165

    [33]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J, Allan D C 1999 Science 285 1537

    [34]

    Marcuse D 1991 Theory of Dielectric Optical Waveguides (2nd Ed.) (London:Academic Press) pp7-19

    [35]

    Michieletto M, Lyngs J K, Jakobsen C, Lgsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103

    [36]

    Uebel P, Gnendi M C, Frosz M H, Ahmed G, Edavalath N N, Mnard J-M, Russell P St J 2016 Opt. Lett. 41 1961

    [37]

    Hayes J R, Sandoghchi S R, Bradley T D, Liu Z, Slavik R, Gouveia M A, Wheeler N V, Jasion G, Chen Y, Fokoua E N, Petrovich M N, Richardson D J, Poletti F 2017 J. Lightwave Technol. 35 437

    [38]

    Chafer M, Delahaye F, Amrani F, Debord B, Grme F, Benabid F 2018 Conference on Lasers and Electro-Optics San Jose, May 13-18, paper SF1K.3

    [39]

    Liu X L, Ding W, Wang Y Y, Gao S F, Cao L, Feng X, Wang P 2017 Opt. Lett. 42 863

    [40]

    Vincetti L, Setti V 2012 Opt. Express 20 14350

    [41]

    Gao S F, Wang Y Y, Liu X L, Gu S, Peng Z G, Wang P, Du K M 2017 Chin. J. Lasers 44 0201012

    [42]

    Roberts P J, Williams D P, Sabert H, Mangan B J, Bird D M, Birks T A, Knight J C, Russell P St J 2006 Opt. Express 14 7329

    [43]

    Fini J M, Nicholson J W, Mangan B, Meng L, Windeler R S, Monberg E M, DeSantolo A, DiMarcello F V, Mukasa K 2014 Nat. Commun. 5 5085

    [44]

    Haakestad M W, Skaar J 2005 Opt. Express 13 9922

    [45]

    Vincetti L, Setti V 2010 Opt. Express 18 23133

    [46]

    Olszewski J, Szpulak M, Urbańczyk W 2005 Opt. Express 13 6015

    [47]

    Debord B, Alharbi M, Vincetti L, Husakou A, Fourcade-Dutin C, Hoenninger C, Mottay E, Grme F, Benabid F 2014 Opt. Express 22 10735

    [48]

    Elu U, Baudisch M, Pires H, Tani F, Frosz M H, Kttig F, Ermolov A, Russell P St J, Biegert J 2017 Optica 4 1024

    [49]

    Balciunas T, Fourcade-Dutin C, Fan G, Witting T, Voronin A A, Zheltikov A M, Gerome F, Paulus G G, Baltuska A, Benabid F 2015 Nat. Commun. 6 6117

    [50]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavk R, Richardson D J 2013 Nat. Photon. 7 279

    [51]

    Kttig F, Tani F, Biersach C M, Travers J C, Russell P St J 2017 Optica 4 1272

    [52]

    Hassan M R A, Yu F, Wadsworth W J, Knight J C 2016 Optica 3 218

    [53]

    Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629

    [54]

    Okaba S, Takano T, Benabid F, Bradley T, Vincetti L, Maizelis Z, Yampol'skii V, Nori F, Katori H 2014 Nat. Commun. 5 4096

    [55]

    Sprague M R, Michelberger P S, Champion T F M, England D G, Nunn J, Jin X M, Kolthammer W S, Abdolvand A, Russell P St J, Walmsley I A 2014 Nat. Photon. 8 287

    [56]

    Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L, Liu W 2016 Opt. Express 24 22454

  • [1] Yang Jia-Hao,  Zhang Ao-Yan,  Xia Chang-Ming,  Deng Zhi-Peng,  Liu Jian-Tao,  Huang Zhuo-Yuan,  Kang Jia-Jian,  Zeng Hao-Ran,  Jiang Ren-Jie,  Mo Zhi-Feng,  Hou Zhi-Yun,  Zhou Gui-Yao. Research on Preparation and Mode Conversion Application of Narrowband Hollow-core Anti-resonant Fiber. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212194
    [2] Yang Jia-Hao, Zhang Ao-Yan, Xia Chang-Ming, Deng Zhi-Peng, Liu Jian-Tao, Huang Zhuo-Yuan, Kang Jia-Jian, Zeng Hao-Ran, Jiang Ren-Jie, Mo Zhi-Feng, Hou Zhi-Yun, Zhou Gui-Yao. Preparation and mode conversion application of narrowband hollow-core anti-resonant fiber. Acta Physica Sinica, 2022, 71(13): 134207. doi: 10.7498/aps.70.20212194
    [3] Liu Yin-Zi, Xing Ying-Bing, Liao Lei, Wang Yi-Bo, Peng Jing-Gang, Li Hai-Qing, Dai Neng-Li, Li Jin-Yan. 530 W all-fiber continuous-wave Tm-doped fiber laser. Acta Physica Sinica, 2020, 69(18): 184209. doi: 10.7498/aps.69.20200466
    [4] Li Chang-Sheng, Chen Jia. How to eliminate unwanted elasto-optical birefringence from optical devices. Acta Physica Sinica, 2016, 65(3): 037801. doi: 10.7498/aps.65.037801
    [5] Xiao Ya-Ling, Liu Yan-Ge, Wang Zhi, Liu Xiao-Qi, Luo Ming-Ming. Design and experimental study of mode selective all-fiber fused mode coupler based on few mode fiber. Acta Physica Sinica, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [6] Lou Shu-Qin, Wang Xin, Lu Wen-Liang. Design and fabrication of a novel side-leakage photonic crystal fiber and its propagation properties. Acta Physica Sinica, 2013, 62(8): 084216. doi: 10.7498/aps.62.084216
    [7] Wang Wei, Yang Bo, Song Hong-Ru, Fan Yue. Characteristic analyses of high birefringence and two zero dispersion points photonic crystal fiber with octagonal lattices. Acta Physica Sinica, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [8] Wang Wei, Yang Bo. Dispersion and birefringence analysis of photonic crystal fiber with rhombus air-core structure. Acta Physica Sinica, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [9] Cheng Sheng-Fei, Peng Jing-Gang, Li Jin-Yan, Cheng Lan, Jiang Zuo-Wen, Li Hai-Qing, Dai Neng-Li, Jiang Fa-Gang, Yang Xiao-Bo. The surface modes loss control of hollow-core photonic crystal fibers. Acta Physica Sinica, 2012, 61(24): 244207. doi: 10.7498/aps.61.244207
    [10] Wang Jing, Zhang Chen-Fang, Kang Ze-Xin, Sun Jiang, Zheng Si-Wen, Lin Zhen, Wang Chun-Can, Jian Shui-Sheng. The transmission characteristic of the multi-polarization controlled fiber loop mirror. Acta Physica Sinica, 2011, 60(12): 124215. doi: 10.7498/aps.60.124215
    [11] Wang Xiao-Yan, Li Shu-Guang, Liu Shuo, Zhang Lei, Yin Guo-Bing, Feng Rong-Pu. Midinfrared As2 S3 chalcogenide glass broadband normal dispersion photonic crystal fiber with high birefringence and high nonlinearity. Acta Physica Sinica, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [12] Bai Jin-Jun, Wang Chang-Hui, Huo Bing-Zhong, Wang Xiang-Hui, Chang Sheng-Jiang. A broadband low loss and high birefringence terahertz photonic bandgap photonic crystal fiber. Acta Physica Sinica, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [13] Wang Jing-Li, Yao Jian-Quan, Chen He-Ming, Bing Pi-Bin, Li Zhong-Yang, Zhong Kai. Design and study of high birefringent terahertz photonic crystal fiber with hybrid crystal lattice. Acta Physica Sinica, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [14] Fu Xiao-Xia, Chen Ming-Yang. Terahertz transmission optical fiber with low absorptionloss and high birefringence. Acta Physica Sinica, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [15] Yang Qian-Qian, Hou Lan-Tian. Octagonal photonic crystal fiber of birefringence. Acta Physica Sinica, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [16] Fu Bo, Li Shu-Guang, Yao Yan-Yan, Zhang Lei, Zhang Mei-Yan, Liu Si-Ying. Coupling characteristics of dual-core high birefringence photonic crystal fibers. Acta Physica Sinica, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [17] Yan Feng-Ping, Li Yi-Fan, Wang Lin, Gong Tao-Rong, Liu Peng, Liu Yang, Tao Pei-Lin, Qu Mei-Xia, Jian Shui-Sheng. Design and characteristics of a near-elliptic inner cladding High birefringent polarization-stable photonic crystal fiber. Acta Physica Sinica, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [18] Jia Wei-Guo, Shi Pei-Ming, Yang Xing-Yu, Zhang Jun-Ping, Fan Guo-Liang. Modulation instability of near frequency propagation regime in polarization-maintaining fibers. Acta Physica Sinica, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
    [19] Li Shu-Guang, Xing Guang-Long, Zhou Gui-Yao, Hou Lan-Tian. Numerical simulation of square-lattice photonic crystal fiber with high birefringence and low confinement loss. Acta Physica Sinica, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [20] Jia Wei-Guo, Yang Xing-Yu. Vector modulation instability in an arbitrary polarized direction in strong birefringence fibers. Acta Physica Sinica, 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
Metrics
  • Abstract views:  13886
  • PDF Downloads:  859
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2018
  • Accepted Date:  27 April 2018
  • Published Online:  20 June 2019

/

返回文章
返回
Baidu
map