Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An approach to selecting the optimal squeezed parameter for generating path entangled microwave signal

Wang Xiang-Lin Wu De-Wei Li Xiang Zhu Hao-Nan Chen Kun Fang Guan

Citation:

An approach to selecting the optimal squeezed parameter for generating path entangled microwave signal

Wang Xiang-Lin, Wu De-Wei, Li Xiang, Zhu Hao-Nan, Chen Kun, Fang Guan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum information theory can improve the performances of the classical information techniques by utilizing the entangled state of electromagnetic field. Path entangled microwave signal distributes its entangled states between spatially separated subsystems of an information system, which can be widely applied to quantum information technology in the future. Currently, there are only several reports on path entangled microwave signal generation. Therefore, the quality of path entangled microwave signal is far from satisfactory. In order to improve the quality of path entangled microwave signal further, we make a discussion about the factors that affect the quality of it and design a quality evaluation scheme for it. Based on the designed quality evaluation scheme, an optimal squeezed parameter selection method is suggested.Firstly, the generation principle of path entangled microwave signal is briefly introduced, and the generated signal is denoted as quantum mechanics operator in the Fock state representation. In the meantime, the qualitative relationship between generated signal and the squeezed parameter is determined. Secondly, a quality evaluation method for path entangled microwave signal is proposed:the quality of generated signal is evaluated by comparing with the expectation value of the entangled microwave photon number which reflects the degree of quantum entanglement. Finally, an approach to selecting the optimal squeezed parameter for generating the path entangled microwave signals is proposed based on the quality evaluation method. The process of it is as follows:an array of squeezed parameters which achieve the highest entanglement probability of different microwave photons is acquired under the premise that the maximal effective number of entangled microwave photons is set to be a certain value. Then an array of expectation values of number of entangled microwave photons corresponding to these squeeze parameters is acquired, and the squeezed parameter corresponding to the largest expectation value is what we are searching for. Through theoretical analysis, we draw a conclusion that the quality of path entangled microwave signal is determined by squeezed parameter. Accurately, it is related to the squeezed degree, but unrelated to the squeezed angle. From simulations, we find that the maximal expectation value of the total number of entangled microwave photons is 3.77 when the simulation proceeds on condition that the maximal number of effective entangled microwave photons is set to be 26. And its corresponding squeezed degree value is 1.77, which means that the optimal path entangled microwave signal can be generated when we set the value of squeezed degree to be 1.77. And our method is proved effective by the simulation results. We provide an original idea on generating high-quality path entangled microwave signals for its experiments and applications.
      Corresponding author: Wu De-Wei, wudewei74609@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61573372).
    [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [2]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [3]

    Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T, Strunk C 2010 Phys. Rev. Lett. 104 026801

    [4]

    Recher P, Sukhorakov E V, Loss D 2001 Phys. Rev. B 63 165314

    [5]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663

    [6]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [7]

    Johansson G 2012 Physics 5 120

    [8]

    Arndt M, Hornberger K, Zeilinger A 2005 Phys. World 18 35

    [9]

    Gisin N, Thew R 2006 Nat. Photon. 1 165

    [10]

    Zhou C H, Qian W P 2015 Radar Sci. Tech. 13 457 (in Chinese)[周城宏, 钱卫平 2015 雷达科学与技术 13 457]

    [11]

    Peng C Z, Pan J W (in Chinese)[彭承志, 潘建伟 2016 中国科学院院刊 31 1096]

    [12]

    Menzel E P, Di Candia R, Deppe F, Eder P, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [13]

    Di Candia R, Menzel E P, Zhong L, Deppe F, Marx A, Gross R, Solano E 2014 New J. Phys. 16 015001

    [14]

    Menzel E P 2013 Ph. D. Dissertation (Munich:Technic University of Munich)

    [15]

    Eder P 2012 Ph. D. Dissertation (Munich:Technic University of Munich)

    [16]

    Nakamura Y, Yamamoto T 2013 IEEE Photon. J. 5 0701406

    [17]

    Mariantoni M, Menzel E P, Deppe F, Araque Caballero M A, Baust A, Niemczyk T, Hoffmann E, Solano E, Marx A, Gross R 2010 Phys. Rev. Lett. 105 133601

    [18]

    Hoffmann E, Deppe F, Niemczyk T, Wirth T, Menzel E P 2010 Appl. Phys. Lett. 97 222508

    [19]

    Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6 296

    [20]

    Kim M S, Son W, Buzek V, Knight P L 2002 Phys. Rev. A 65 032323

    [21]

    Li X, Wu D W, Wang X, Miao Q, Chen K, Yang C Y 2016 Acta Phys. Sin. 65 114204 (in Chinese)[李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕 2016 65 114204]

    [22]

    Vedral V, Plenio M B, Rippin M A, Knight P K 1997 Phy. Rev. Lett. 78 2275

    [23]

    Shimony A 1995 Ann. NY Acad. Sci. 755 675

    [24]

    Gerry G, Knight P 2005 Introductory Quantum Optics (Cambridge:Cambridge University Press) p187

  • [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [2]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [3]

    Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T, Strunk C 2010 Phys. Rev. Lett. 104 026801

    [4]

    Recher P, Sukhorakov E V, Loss D 2001 Phys. Rev. B 63 165314

    [5]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663

    [6]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [7]

    Johansson G 2012 Physics 5 120

    [8]

    Arndt M, Hornberger K, Zeilinger A 2005 Phys. World 18 35

    [9]

    Gisin N, Thew R 2006 Nat. Photon. 1 165

    [10]

    Zhou C H, Qian W P 2015 Radar Sci. Tech. 13 457 (in Chinese)[周城宏, 钱卫平 2015 雷达科学与技术 13 457]

    [11]

    Peng C Z, Pan J W (in Chinese)[彭承志, 潘建伟 2016 中国科学院院刊 31 1096]

    [12]

    Menzel E P, Di Candia R, Deppe F, Eder P, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [13]

    Di Candia R, Menzel E P, Zhong L, Deppe F, Marx A, Gross R, Solano E 2014 New J. Phys. 16 015001

    [14]

    Menzel E P 2013 Ph. D. Dissertation (Munich:Technic University of Munich)

    [15]

    Eder P 2012 Ph. D. Dissertation (Munich:Technic University of Munich)

    [16]

    Nakamura Y, Yamamoto T 2013 IEEE Photon. J. 5 0701406

    [17]

    Mariantoni M, Menzel E P, Deppe F, Araque Caballero M A, Baust A, Niemczyk T, Hoffmann E, Solano E, Marx A, Gross R 2010 Phys. Rev. Lett. 105 133601

    [18]

    Hoffmann E, Deppe F, Niemczyk T, Wirth T, Menzel E P 2010 Appl. Phys. Lett. 97 222508

    [19]

    Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6 296

    [20]

    Kim M S, Son W, Buzek V, Knight P L 2002 Phys. Rev. A 65 032323

    [21]

    Li X, Wu D W, Wang X, Miao Q, Chen K, Yang C Y 2016 Acta Phys. Sin. 65 114204 (in Chinese)[李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕 2016 65 114204]

    [22]

    Vedral V, Plenio M B, Rippin M A, Knight P K 1997 Phy. Rev. Lett. 78 2275

    [23]

    Shimony A 1995 Ann. NY Acad. Sci. 755 675

    [24]

    Gerry G, Knight P 2005 Introductory Quantum Optics (Cambridge:Cambridge University Press) p187

  • [1] Cheng Ai-Qiang, Wang Shuai, Xu Zu-Yin, He Jin, Zhang Tian-Cheng, Bao Hua-Guang, Ding Da-Zhi. A large-signal scaling model of high-power GaN microwave device. Acta Physica Sinica, 2023, 72(14): 147103. doi: 10.7498/aps.72.20230440
    [2] Lai Hong. Generalized isometric tensor based quantum key distribution protocols of squeezed multiphoton entangled states. Acta Physica Sinica, 2023, 72(17): 170301. doi: 10.7498/aps.72.20230589
    [3] Chen Yong-Qiang, Xu Guang-Yuan, Wang Jun, Fang Yu, Wu Xing-Zhi, Ding Ya-Qiong, Sun Yong. Electromagnetic diode based on asymmetric microwave photonic crystal. Acta Physica Sinica, 2022, 71(3): 034701. doi: 10.7498/aps.71.20211291
    [4] Electromagnetic Diode Based on Asymmetric Microwave Photonic Crystal. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211291
    [5] Liu Kui, Ma Long, Su Bi-Da, Li Jia-Ming, Sun Heng-Xin, Gao Jiang-Rui. Generation of continuous variable frequency comb entanglement based on nondegenerate optical parametric amplifier. Acta Physica Sinica, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [6] Ma Yan-Na, Wang Wen-Rui, Song Kai-Chen, Yu Jin-Long, Ma Chuang, Zhang Hua-Fang. Photonic microwave waveform generation based on dual-wavelength time domain synthesis technology. Acta Physica Sinica, 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [7] Luo Jun-Wen, Wu De-Wei, Li Xiang, Zhu Hao-Nan, Wei Tian-Li. Continuous variable polarization entanglement in microwave domain. Acta Physica Sinica, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [8] Wei Tian-Li, Wu De-Wei, Yang Chun-Yan, Luo Jun-Wen, Li Xiang, Zhu Hao-Nan. Squeezing angle locking of entangled microwave based on photon counting. Acta Physica Sinica, 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [9] He Ying-Qiu, Ding Dong, Peng Tao, Yan Feng-Li, Gao Ting. Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term. Acta Physica Sinica, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [10] Li Xiang,  Wu De-Wei,  Miao Qiang,  Zhu Hao-Nan,  Wei Tian-Li. Characteristics and expressions of entangled microwave signals. Acta Physica Sinica, 2018, 67(24): 240301. doi: 10.7498/aps.67.20181595
    [11] Zhu Hao-Nan, Wu De-Wei, Li Xiang, Wang Xiang-Lin, Miao Qiang, Fang Guan. Path-entanglement microwave signals detecting method based on entanglement witness. Acta Physica Sinica, 2018, 67(4): 040301. doi: 10.7498/aps.67.20172164
    [12] Li Bai-Hong, Wang Dou-Dou, Pang Hua-Feng, Zhang Tao, Xie You, Gao Feng, Dong Rui-Fang, Li Yong-Fang, Zhang Shou-Gang. Compression of correlation time of chirped biphotons by binary phase modulation. Acta Physica Sinica, 2017, 66(4): 044206. doi: 10.7498/aps.66.044206
    [13] Li Xiang, Wu De-Wei, Wang Xi, Miao Qiang, Chen Kun, Yang Chun-Yan. A method of evaluating the quality of dual-path entangled quantum microwave signal generated based on von Neumann entropy. Acta Physica Sinica, 2016, 65(11): 114204. doi: 10.7498/aps.65.114204
    [14] Gao Tai-Chang, Song Kun, Liu Xi-Chuan, Yin Min, Liu Lei, Jiang Shi-Tai. Research on the method and experiment of path rainfall intensity inversion using a microwave link. Acta Physica Sinica, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301
    [15] Song Ming-Yu, Wu Yao-De. Generation of continuous-variable entanglement in a two-mode four-level single-atom driven by microwave. Acta Physica Sinica, 2013, 62(6): 064207. doi: 10.7498/aps.62.064207
    [16] Ding Shuai, Wang Bing-Zhong, Ge Guang-Ding, Wang Duo, Zhao De-Shuang. Realization of microwave wave signal time reversal based on time lens theory. Acta Physica Sinica, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [17] Zhao Dong-Mei, Li Zhi-Gang, Guo Yan-Qiang, Li Gang, Wang Jun-Min, Zhang Tian-Cai. Photon statistics of squeezed vacuum field from optical parametric oscillator far below the threshold. Acta Physica Sinica, 2010, 59(9): 6231-6236. doi: 10.7498/aps.59.6231
    [18] Xie Hong-Yun, Jin Dong-Yue, He Li-Jian, Zhang Wei, Wang Lu, Zhang Wan-Rong, Wang Wei. Optical microwave generation based on DFB lasers. Acta Physica Sinica, 2008, 57(7): 4558-4563. doi: 10.7498/aps.57.4558
    [19] Ji Ling-Ling, Wu Ling-An. Generation of two-photon entangled states through a cascaded nonlinear optical process in a quasiperiodic optical superlattice. Acta Physica Sinica, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [20] Huang Yan-Xia, Zhao Peng-Yi, Huang Xi, Zhan Ming-Sheng. Entanglement and disentanglement in the nonlinear interaction between squeezing vacuum state field and atom. Acta Physica Sinica, 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
Metrics
  • Abstract views:  5410
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2017
  • Accepted Date:  15 July 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map