Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface of photonic crystal heterostructure for broadening bandwidth of unidirectional light transmission

Fei Hong-Ming Xu Ting Liu Xin Lin Han Chen Zhi-Hui Yang Yi-Biao Zhang Ming-Da Cao Bin-Zhao Liang Jiu-Qing

Citation:

Interface of photonic crystal heterostructure for broadening bandwidth of unidirectional light transmission

Fei Hong-Ming, Xu Ting, Liu Xin, Lin Han, Chen Zhi-Hui, Yang Yi-Biao, Zhang Ming-Da, Cao Bin-Zhao, Liang Jiu-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • An all-optical diode (AOD) is a spatially nonreciprocal device that in the ideal case and for a specific wavelength allows light to totally transmit along the forward direction but totally inhibits light to propagate along the backward direction,yielding a unitary contrast.AODs are widely considered to be the key components for the next-generation all-optical signal processing,and completely analogous to electronic diodes which are widely used in computers for processing electric signals.Most of AOD designs suffer some serious drawbacks which make them not suitable for commercial and large-scale applications.Relatively large physical sizes are often needed,the balance between figure of merit and optical intensity is usually inadequate,and in some cases cumbersome structural designs are necessary to provide structural asymmetry.Among different approaches,the AOD based on two-dimensional (2D) photonic crystal (PC) heterostructure has shown significant advantages due to the capability of on-chip integration with other photonic devices.However,current PC heterostructure AOD (PCH-AOD) is based on the mismatch of directional bandgaps,which shows poor performance as a result of the relatively low forward transmittance (0.40) and contrast ratio (0.75) with a narrow bandwidth (about 10 nm).In order to improve the performance,here we propose a new PCH-AOD design based on the total reflection principle,which is able to achieve high forward transmittance and contrast ratio within a broad wavelength range.Our design is composed of two rectangle lattice 2D PC structures,in which periodically distributed air holes are embedded in silica (PC1) and silicon (PC2) materials,respectively.The two PCs are combined with an inclined interface along the -M direction of both PCs.In this way,the total reflection condition is satisfied when light propagates from silicon to silica material.The forward and backward propagating optical waves are incident along the -X direction of both PCs,in which direction there are transmission bands for TE mode centered at 1550~nm wavelength.A commercial software (R-soft) based on the finite-difference time-domain (FDTD) method is used to study the unidirectional transmission performance of the PCH-AOD.The results show that the forward propagating optical waves (from PC1 to PC2) can transmit efficiently through the device.In addition,we further improve the forward transmittance by exploiting the self-collimation effect of PCs and optimizing the coupling from PC1 to PC2.In the meantime,the light propagating along the backward direction (from PC2 to PC1) is blocked at the total reflection interface with near-zero transmittance.In this way,the unidirectional transmission is achieved without the reliance on the directional bandgap mismatch,and thus broad bandwidth is achieved.The AOD has a forward transmittance of 0.64 and a transmission contrast of 0.97 with a bandwidth of 553 nm at 1550 nm.The equal frequency contours (EFCs) of the PCs is plotted to demonstrate the working principle of the PCH-AOD.Finally,considering the experimental fabrication of the AOD device,we analyze the unidirectional transmission performance of a planar PCH-AOD with a finite thickness of 1500 nm.Despite a small reduction (12.3%) in the forward transmittance,the transmission contrast is maintained at about 0.97,and the unidirectional transmission bandwidth is increased to 600 nm.Therefore,our design can be implemented in practice and our work provides a theoretical framework for designing high performance PCH-AOD.In addition,our design allows an unprecedented high forward transmittance,contrast ratio and broad working bandwidth of the device at extremely low operational optical intensity,due to the total reflection condition,and the optimized forward propagation and coupling condition.The proposed device has a small footprint that is promising for next-generation on-chip applications.
      Corresponding author: Fei Hong-Ming, feihm187491@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575138), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61505135), the Natural Science Foundation of Shanxi Province, China (Grant No. 2016011048), and the Chinese Government Scholarship (Grant No. 201508140067).
    [1]

    Xu S H, Ding X M, Zi J, Hou X Y 2002 Physics 31 558 (in Chinese)[徐少辉, 丁训民, 资剑, 侯晓远2002物理31 558]

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    John S 1987 Phys. Rev. Lett. 58 2486

    [4]

    Zamani M, Ghanaatshoar M 2012 Opt. Express 20 24524

    [5]

    Yu Z F, Veronis G, Wang Z, Fan S H 2008 Phys. Rev. Lett. 100 023902

    [6]

    Scalora M, Dowling J P, Bowden C M, Bloemer M J 1994 J. Appl. Phys. 76 2023

    [7]

    Tocci M D, Bloemer M J, Scalora M, Dowing J P, Bowen C M 1995 Appl. Phys. Lett. 66 2324

    [8]

    Inoue M, Fujii T 1997 J. Appl. Phys. 81 5659

    [9]

    Xue C H, Jiang H T, Chen H 2010 Opt. Express 18 7479

    [10]

    Cicek A, Ulug B 2013 Appl. Phys. B 113 619

    [11]

    Feng S, Wang Y Q 2013 Opt. Express 21 220

    [12]

    Feng S, Wang Y Q 2013 Opt. Mater. 35 2166

    [13]

    Feng S, Wang Y Q 2013 Opt. Mater. 35 1455

    [14]

    Lu C C, Hu X Y, Zhang Y B, Li Z Q, Xu X A, Yang H, Gong Q H 2011 Appl. Phys. Lett. 99 051107

    [15]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948

    [16]

    Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213 (in Chinese)[程立锋, 任承, 王萍,冯帅2014 63 154213]

    [17]

    Kurt H, Yilmaz D, Akosman A E, Ozbay E 2012 Opt. Express 20 20635

    [18]

    Feng S, Wang Y Q 2013 Opt. Mater. 36 546

    [19]

    Galloa K, Assanto G, Parameswaran K R, Fejer M M 2001 Appl. Phys. Lett. 79 314

    [20]

    Li Z Y, Gan L 2011 Acta Opt. Sin. 31 0900119 (in Chinese)[李志远,甘霖2011光学学报31 0900119]

  • [1]

    Xu S H, Ding X M, Zi J, Hou X Y 2002 Physics 31 558 (in Chinese)[徐少辉, 丁训民, 资剑, 侯晓远2002物理31 558]

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    John S 1987 Phys. Rev. Lett. 58 2486

    [4]

    Zamani M, Ghanaatshoar M 2012 Opt. Express 20 24524

    [5]

    Yu Z F, Veronis G, Wang Z, Fan S H 2008 Phys. Rev. Lett. 100 023902

    [6]

    Scalora M, Dowling J P, Bowden C M, Bloemer M J 1994 J. Appl. Phys. 76 2023

    [7]

    Tocci M D, Bloemer M J, Scalora M, Dowing J P, Bowen C M 1995 Appl. Phys. Lett. 66 2324

    [8]

    Inoue M, Fujii T 1997 J. Appl. Phys. 81 5659

    [9]

    Xue C H, Jiang H T, Chen H 2010 Opt. Express 18 7479

    [10]

    Cicek A, Ulug B 2013 Appl. Phys. B 113 619

    [11]

    Feng S, Wang Y Q 2013 Opt. Express 21 220

    [12]

    Feng S, Wang Y Q 2013 Opt. Mater. 35 2166

    [13]

    Feng S, Wang Y Q 2013 Opt. Mater. 35 1455

    [14]

    Lu C C, Hu X Y, Zhang Y B, Li Z Q, Xu X A, Yang H, Gong Q H 2011 Appl. Phys. Lett. 99 051107

    [15]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948

    [16]

    Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213 (in Chinese)[程立锋, 任承, 王萍,冯帅2014 63 154213]

    [17]

    Kurt H, Yilmaz D, Akosman A E, Ozbay E 2012 Opt. Express 20 20635

    [18]

    Feng S, Wang Y Q 2013 Opt. Mater. 36 546

    [19]

    Galloa K, Assanto G, Parameswaran K R, Fejer M M 2001 Appl. Phys. Lett. 79 314

    [20]

    Li Z Y, Gan L 2011 Acta Opt. Sin. 31 0900119 (in Chinese)[李志远,甘霖2011光学学报31 0900119]

  • [1] Sui Wen-Jie, Zhang Yu, Zhang Zi-Rui, Wang Xiao-Long, Zhang Hong-Fang, Shi Qiang, Yang Bing. Unidirectional propagation control of helical edge states in topological spin photonic crystals. Acta Physica Sinica, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [2] Zhi Wen-Qiang, Fei Hong-Ming, Han Yu-Hui, Wu Min, Zhang Ming-Da, Liu Xin, Cao Bin-Zhao, Yang Yi-Biao. Unidirectional transmission of funnel-shaped waveguide with complete bandgap. Acta Physica Sinica, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [3] Wu Min, Fei Hong-Ming, Lin Han, Zhao Xiao-Dan, Yang Yi-Biao, Chen Zhi-Hui. Design of asymmetric transmission of photonic crystal heterostructure based on two-dimensional hexagonal boron nitride material. Acta Physica Sinica, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [4] Study on unidirectional transmission of funnel-shaped waveguide with complete bandgap. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211299
    [5] Fei Hong-Ming, Yan Shuai, Xu Yu-Cheng, Lin Han, Wu Min, Yang Yi-Biao, Chen Zhi-Hui, Tian Yuan, Zhang Ya-Min. Photonic crystal heterostructure with self-collimation effect for broad-band asymmetric optical transmission. Acta Physica Sinica, 2020, 69(18): 184214. doi: 10.7498/aps.69.20200538
    [6] Liu Dan, Hu Sen. Two-dimensional silicon annular photonic crystals for realizing polarization-independent unidirectional transmission. Acta Physica Sinica, 2019, 68(2): 024206. doi: 10.7498/aps.68.20181397
    [7] Liu Dan, Hu Sen, Xiao Ming. Study on unidirectional transmission in silicon photonic crystal heterojunctions. Acta Physica Sinica, 2017, 66(5): 054209. doi: 10.7498/aps.66.054209
    [8] Wu Rong, Tian Yu-Ting, Zhao Dong-Feng, Li Da-Wei, Hua Neng, Shao Ping. Total internal reflection orders in transmission grating. Acta Physica Sinica, 2016, 65(5): 054202. doi: 10.7498/aps.65.054202
    [9] Chen Ying, Wang Wen-Yue, Yu Na. Improvement of the filtering performance of a heterostructure photonic crystal ring resonator using PSO algorithm. Acta Physica Sinica, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [10] Cheng Li-Feng, Ren Cheng, Wang Ping, Feng Shuai. Study on unidirectional transmission of photonic crystal diodes based on heterostructure interface optimization. Acta Physica Sinica, 2014, 63(15): 154213. doi: 10.7498/aps.63.154213
    [11] Liu Qi-Neng, Liu Qin. Resonance theory of SH wave total reflection tunnel effect in 1D solid-solid infinite cycle phononic crystal. Acta Physica Sinica, 2013, 62(4): 044301. doi: 10.7498/aps.62.044301
    [12] Wu Kai-Shun, Long Xing-Teng, Dong Jian-Wen, Chen Di-Hu, Wang He-Zhou. Phase properties of photonic crystal heterostructure and its applications. Acta Physica Sinica, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [13] Li Xun-Shuan, Peng Ying-Quan, Yang Qing-Sen, Xing Hong-Wei, Lu Fei-Ping. Analytical model of charge transport at organic semiconductor interfaces. Acta Physica Sinica, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [14] Frequency response of photonic heterostructures consisting of single-negative materials. Acta Physica Sinica, 2007, 56(12): 7280-7285. doi: 10.7498/aps.56.7280
    [15] Shi Gang, Cen Jie-Ping, Fan Li, Liu Yong-Jun. Characteristics of total reflection at interface between left-handed and right-handed materials. Acta Physica Sinica, 2007, 56(8): 4653-4656. doi: 10.7498/aps.56.4653
    [16] Tong Yuan-Wei, Zhang Ye-Wen, He Li, Li Hong-Qiang, Chen Hong. The band structure in microwave frequency for quasi-1-D coaxial photonic crystals. Acta Physica Sinica, 2006, 55(2): 935-940. doi: 10.7498/aps.55.935
    [17] Guan Chun-Ying, Yuan Li-Bo. Analysis of band gap in honeycomb photonic crystal heterostructure. Acta Physica Sinica, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [18] Zhou Chun-Hong, Zheng You-Dou, Deng Yong-Zhen, Kong Yue-Chan, Chen Peng, Xi Dong-Juan, Gu Shu-Lin, Shen Bo, Zhang Rong, Jiang Ruo-Lian, Han Ping, Shi Yi. Study of interface trap states of AlN-Si(111) heterostructure*. Acta Physica Sinica, 2004, 53(11): 3888-3894. doi: 10.7498/aps.53.3888
    [19] Liu Jiang-Tao, Zhou Yun-Song, Wang Fu-He, Gu Ben-Yuan. Guide modes at interface of photonic crystal heterostructures composed of different lattices. Acta Physica Sinica, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [20] FU KE-XIANG, ZHANG DA-YUE, WANG ZHI-HENG, ZHANG QI-ZHI, ZHANG JING. RIGOROUS MODAL THEORY OF PHASE GRATING AND THE TOTAL REFLECTANCE PROPERTY. Acta Physica Sinica, 1998, 47(8): 1278-1288. doi: 10.7498/aps.47.1278
Metrics
  • Abstract views:  5514
  • PDF Downloads:  230
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2017
  • Accepted Date:  23 May 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map