Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Five-fold local symmetries in metallic liquids and glasses

Li Mao-Zhi

Citation:

Five-fold local symmetries in metallic liquids and glasses

Li Mao-Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this article, we review the experimental, theoretical and simulation studies on five-fold local symmetries in metallic liquids and glasses. In the early study on simple liquid structure, it has been realized that five-fold local symmetry plays a key role in irregular structures, supercooling and crystallization of simple liquids. In particular, icosahedral short-range order, representative of five-fold local symmetry, has attracted much attention. In addition, researches proposed a dense random packing model for simple liquid structure in 1959, and found a wide variety of polyhedra and absolute predominance of pentagonal faces in simple liquids, and also pointed out that pentagonal arrangements can only occur in very complex structures such as some of the alloy structures. Based on the Frank's hypothesis of icosahedral short-range order as blocking unit in a simple liquid, a lot of theoretical and experimental efforts have been made to confirm its existence in simple liquids, metallic liquids and glasses. So far, several theoretical methods have been developed for characterizing local atomic structures in simple liquids, such as bond-orientational order parameter, Honeycutt-Andersen index, and Voronoi tessellation. Although the local atomic symmetries in atomic structures in metallic liquids and glasses can be characterized by these methods and the geometries of the atomic structures in liquids and glasses have received much more attention, an atomic cluster model has been developed for establishing the structure-property relationship in metallic liquid and glass. Due to the diversity of the atomic clusters in both type and population of different metallic liquids and glasses, the atomic cluster model could not present a simple description of structure-property relationship. Based on the fundamental characteristics of metallic liquids and glasses, five-fold local symmetry, the structure-property relationship in metallic liquids and glasses, such as dynamic crossover, glass transition, liquid-liquid phase transition, and deformation can be well described in simple, quantitative and unified ways, and therefore a clear physical picture can be provided. All these studies indicate that five-fold local symmetry as a structural parameter is simple, general and effective.
      Corresponding author: Li Mao-Zhi, maozhili@ruc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51631003), the National Basic Research Program of China (Grant No. 2015CB856800), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 16XNLQ01).
    [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Royall C P, Williams S R 2015 Phys. Rep. 560 1

    [3]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99

    [4]

    Andersen H C 2005 Proc. Natl. Acad. Sci. USA 102 6686

    [5]

    Roland C M 2008 Soft Matter 4 2316

    [6]

    Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S H, Stanley H E 2010 Proc. Natl. Acad. Sci. USA 107 22457

    [7]

    Ngai K 2011 Relaxation and Diffusion in Complex Systems (New York: Springer) pp1-47

    [8]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [9]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [10]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R 74 71

    [11]

    Li M Z 2014 J. Mater. Sci. Technol. 30 551

    [12]

    Li M Z, Peng H L, Hu Y C, Li F X, Zhang H P, Wang W H 2017 Chin. Phys. B 26 016104

    [13]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [14]

    Bernal J D 1937 Trans. Faraday Soc. 33 27

    [15]

    Bernal J D 1964 Proc. Roy. Soc. Lond. A 280 299

    [16]

    Born M, Green H S 1946 Proc. Roy. Soc. A 188 10

    [17]

    Kirkwood J 1939 J. Chem. Phys. 7 919

    [18]

    Erying H 1936 J. Chem. Phys. 4 283

    [19]

    Turnbull D 1952 J. Chem. Phys. 20 411

    [20]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43

    [21]

    Bernal J D 1959 Nature 183 141

    [22]

    Hoare M R 1976 Ann. N. Y. Acad. Sci. 279 186

    [23]

    Frank F C, Kasper J S 1958 Acta Cryst. 11 184

    [24]

    Bernal J D 1960 Nature 185 68

    [25]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [26]

    Steinhardt P J, Nelson D R, Ronchetti M 1981 Phys. Rev. Lett. 47 1297

    [27]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [28]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [29]

    Jonsson H, Andersen H C 1988 Phys. Rev. Lett. 60 2295

    [30]

    Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T, Reiter G 2000 Nature 408 839

    [31]

    Spaepen F 2000 Nature 408 781

    [32]

    Wochner P, Gutt C, Autenreth T, Demmer T, Bugaev V, Ortiz A D, Duri A, Zontone F, Grubel G, Dosch H 2009 Proc. Natl. Acad. Sci. USA 106 11511

    [33]

    Cicco A D, Trapananti A, Faggioni S 2003 Phys. Rev. Lett. 91 135505

    [34]

    Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H, Ma E 2004 Phys. Rev. Lett. 92 145502

    [35]

    Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504

    [36]

    Lee G W, Gangopadhyay A K, Croat T K, Rathz T J, Hyers R W, Rogers J R, Kelton K F 2005 Phys. Rev. B 72 174107

    [37]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376

    [38]

    Saksl K, Franz H, Jovari P, Klementiev K, Welter E, Ehnes A, Saida J, Inoue A, Jiang J Z 2003 Appl. Phys. Lett. 83 3924

    [39]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [40]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [41]

    Wang S Y, Wang C Z, Li M Z, Huang L, Ott R T, Kramer M J, Sordelet D J, Ho K M 2008 Phys. Rev. B 78 184204

    [42]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [43]

    Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801

    [44]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [45]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [46]

    Wang Q, Liu C T, Yang Y, Dong Y D, Lu J 2011 Phys. Rev. Lett. 106 215505

    [47]

    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Phys. Rev. B 87 184203

    [48]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202

    [49]

    Zemp J, Celino M, Schonfeld B, Loffler J F 2014 Phys. Rev. B 90 144108

    [50]

    Wu Z W, Li F X, Huo C W, Li M Z, Wang W H, Liu K X 2016 Sci. Rep. 6 35967

    [51]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [52]

    Sha Z D, Wu R Q, Lu Y H, Shen L, Yang M, Cai Y Q, Feng Y P, Li Y 2009 J. Appl. Phys. 105 043521(R)

    [53]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [54]

    Huang L, Wang C Z, Hao S G, Kramer M J, Ho K M 2010 Phys. Rev. B 81 014108

    [55]

    Senkov O N, Cheng Y Q, Miracle D B, Barney E R, Hannon A C, Woodward C F 2012 J. Appl. Phys. 111 123515

    [56]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501

    [57]

    Leocmach M, Tanaka H 2012 Nature Commun. 3 974

    [58]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nature Commun. 6 8310

    [59]

    Ding J, Patinet S, Falk M L, Cheng Y Q, Ma E 2014 Proc. Natl. Acad. Sci. USA 111 14052

    [60]

    Li M Z, Wang C Z, Mendelev M I. Ho K M 2008 Phys. Rev. B 77 184202

    [61]

    Finney J L 1977 Nature 266 309

    [62]

    Borodin V A 1999 Phil. Mag. A 79 1887

    [63]

    Wakeda M, Shibutani Y, Ogata S, Park J 2007 Intermetallics 15 139

    [64]

    Lee J C, Park K W, Kim K H, Fleury E, Lee B J, Wakeda M, Shibutani Y 2007 J. Mater. Res. 22 3087

    [65]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501

    [66]

    Sandor M T, Ke H B, Wang W H, Wu Y 2013 J. Phys. Condens. Matter 25 165701

    [67]

    Royall C P, Williams S R, Ohtsuka T, Tanaka H 2008 Nature Mater. 7 556

    [68]

    Li J D, Cao Y X, Xia C J, Kou B Q, Xiao X H, Fezzaa K, Wang Y J 2014 Nat. Commun. 5 5014

    [69]

    Shintani H, Tanaka H 2008 Nat. Mater. 7 870

    [70]

    Shintani H, Tanaka H 2006 Nat. Phys. 2 200

    [71]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503

    [72]

    Lagogianni A E, Krausser J, Evenson Z, Samwer K, Zaccone A 2016 J. Stat. Mech.: Theor. Exp. 8 084001

    [73]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [74]

    Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L, Wu Y 2015 Nature Commun. 6 7696

    [75]

    Tanaka H 2012 Eur. Phys. J. E 35 113

    [76]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2016 J. Appl. Phys. 119 205108

    [77]

    Gao W, Feng S D, Qi L, Zhang S L, Liu R P 2015 Chin. Phys. Lett. 32 116101

    [78]

    Lu Z P, Liu C T 2004 J. Mater. Sci. 39 3965

    [79]

    Wang W H 2007 Prog. Mater. Sci. 52 540

    [80]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120

    [81]

    Spaepen F 1977 Acta Metall. 25 407

    [82]

    Widmer-Cooper A, Perry H, Harrowell P, Reichman D R 2008 Nature Phys. 4 711

    [83]

    Yang X N, Liu R, Yang M C, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003

  • [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Royall C P, Williams S R 2015 Phys. Rep. 560 1

    [3]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99

    [4]

    Andersen H C 2005 Proc. Natl. Acad. Sci. USA 102 6686

    [5]

    Roland C M 2008 Soft Matter 4 2316

    [6]

    Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S H, Stanley H E 2010 Proc. Natl. Acad. Sci. USA 107 22457

    [7]

    Ngai K 2011 Relaxation and Diffusion in Complex Systems (New York: Springer) pp1-47

    [8]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [9]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [10]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R 74 71

    [11]

    Li M Z 2014 J. Mater. Sci. Technol. 30 551

    [12]

    Li M Z, Peng H L, Hu Y C, Li F X, Zhang H P, Wang W H 2017 Chin. Phys. B 26 016104

    [13]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [14]

    Bernal J D 1937 Trans. Faraday Soc. 33 27

    [15]

    Bernal J D 1964 Proc. Roy. Soc. Lond. A 280 299

    [16]

    Born M, Green H S 1946 Proc. Roy. Soc. A 188 10

    [17]

    Kirkwood J 1939 J. Chem. Phys. 7 919

    [18]

    Erying H 1936 J. Chem. Phys. 4 283

    [19]

    Turnbull D 1952 J. Chem. Phys. 20 411

    [20]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43

    [21]

    Bernal J D 1959 Nature 183 141

    [22]

    Hoare M R 1976 Ann. N. Y. Acad. Sci. 279 186

    [23]

    Frank F C, Kasper J S 1958 Acta Cryst. 11 184

    [24]

    Bernal J D 1960 Nature 185 68

    [25]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [26]

    Steinhardt P J, Nelson D R, Ronchetti M 1981 Phys. Rev. Lett. 47 1297

    [27]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [28]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [29]

    Jonsson H, Andersen H C 1988 Phys. Rev. Lett. 60 2295

    [30]

    Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T, Reiter G 2000 Nature 408 839

    [31]

    Spaepen F 2000 Nature 408 781

    [32]

    Wochner P, Gutt C, Autenreth T, Demmer T, Bugaev V, Ortiz A D, Duri A, Zontone F, Grubel G, Dosch H 2009 Proc. Natl. Acad. Sci. USA 106 11511

    [33]

    Cicco A D, Trapananti A, Faggioni S 2003 Phys. Rev. Lett. 91 135505

    [34]

    Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H, Ma E 2004 Phys. Rev. Lett. 92 145502

    [35]

    Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504

    [36]

    Lee G W, Gangopadhyay A K, Croat T K, Rathz T J, Hyers R W, Rogers J R, Kelton K F 2005 Phys. Rev. B 72 174107

    [37]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376

    [38]

    Saksl K, Franz H, Jovari P, Klementiev K, Welter E, Ehnes A, Saida J, Inoue A, Jiang J Z 2003 Appl. Phys. Lett. 83 3924

    [39]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [40]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [41]

    Wang S Y, Wang C Z, Li M Z, Huang L, Ott R T, Kramer M J, Sordelet D J, Ho K M 2008 Phys. Rev. B 78 184204

    [42]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [43]

    Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801

    [44]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501

    [45]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [46]

    Wang Q, Liu C T, Yang Y, Dong Y D, Lu J 2011 Phys. Rev. Lett. 106 215505

    [47]

    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Phys. Rev. B 87 184203

    [48]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202

    [49]

    Zemp J, Celino M, Schonfeld B, Loffler J F 2014 Phys. Rev. B 90 144108

    [50]

    Wu Z W, Li F X, Huo C W, Li M Z, Wang W H, Liu K X 2016 Sci. Rep. 6 35967

    [51]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [52]

    Sha Z D, Wu R Q, Lu Y H, Shen L, Yang M, Cai Y Q, Feng Y P, Li Y 2009 J. Appl. Phys. 105 043521(R)

    [53]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [54]

    Huang L, Wang C Z, Hao S G, Kramer M J, Ho K M 2010 Phys. Rev. B 81 014108

    [55]

    Senkov O N, Cheng Y Q, Miracle D B, Barney E R, Hannon A C, Woodward C F 2012 J. Appl. Phys. 111 123515

    [56]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501

    [57]

    Leocmach M, Tanaka H 2012 Nature Commun. 3 974

    [58]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nature Commun. 6 8310

    [59]

    Ding J, Patinet S, Falk M L, Cheng Y Q, Ma E 2014 Proc. Natl. Acad. Sci. USA 111 14052

    [60]

    Li M Z, Wang C Z, Mendelev M I. Ho K M 2008 Phys. Rev. B 77 184202

    [61]

    Finney J L 1977 Nature 266 309

    [62]

    Borodin V A 1999 Phil. Mag. A 79 1887

    [63]

    Wakeda M, Shibutani Y, Ogata S, Park J 2007 Intermetallics 15 139

    [64]

    Lee J C, Park K W, Kim K H, Fleury E, Lee B J, Wakeda M, Shibutani Y 2007 J. Mater. Res. 22 3087

    [65]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501

    [66]

    Sandor M T, Ke H B, Wang W H, Wu Y 2013 J. Phys. Condens. Matter 25 165701

    [67]

    Royall C P, Williams S R, Ohtsuka T, Tanaka H 2008 Nature Mater. 7 556

    [68]

    Li J D, Cao Y X, Xia C J, Kou B Q, Xiao X H, Fezzaa K, Wang Y J 2014 Nat. Commun. 5 5014

    [69]

    Shintani H, Tanaka H 2008 Nat. Mater. 7 870

    [70]

    Shintani H, Tanaka H 2006 Nat. Phys. 2 200

    [71]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503

    [72]

    Lagogianni A E, Krausser J, Evenson Z, Samwer K, Zaccone A 2016 J. Stat. Mech.: Theor. Exp. 8 084001

    [73]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [74]

    Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L, Wu Y 2015 Nature Commun. 6 7696

    [75]

    Tanaka H 2012 Eur. Phys. J. E 35 113

    [76]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2016 J. Appl. Phys. 119 205108

    [77]

    Gao W, Feng S D, Qi L, Zhang S L, Liu R P 2015 Chin. Phys. Lett. 32 116101

    [78]

    Lu Z P, Liu C T 2004 J. Mater. Sci. 39 3965

    [79]

    Wang W H 2007 Prog. Mater. Sci. 52 540

    [80]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120

    [81]

    Spaepen F 1977 Acta Metall. 25 407

    [82]

    Widmer-Cooper A, Perry H, Harrowell P, Reichman D R 2008 Nature Phys. 4 711

    [83]

    Yang X N, Liu R, Yang M C, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003

  • [1] Mi Xiao-Lei, Hu Liang, Wu Bo-Wen, Long Qiang, Wei Bing-Bo. Influence of gadolinium content on magnetic property and oxidation mechanism of Fe-B-Nb-Gd metallic glass. Acta Physica Sinica, 2024, 73(9): 097102. doi: 10.7498/aps.73.20232040
    [2] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [3] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [4] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [5] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [6] Xu Shan-Sen, Chang Jian, Zhai Bin, Zhu Xian-Nian, Wei Bing-Bo. Microscopic structure evolution and amorphous solidification mechanism of liquid quinary Zr57Cu20Al10Ni8Ti5 alloy. Acta Physica Sinica, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [7] Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang. Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy. Acta Physica Sinica, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [8] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [9] Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [10] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [11] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [12] Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [13] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [14] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [15] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [16] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [17] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [18] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [19] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [20] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
Metrics
  • Abstract views:  7293
  • PDF Downloads:  480
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2017
  • Accepted Date:  18 July 2017
  • Published Online:  05 September 2017

/

返回文章
返回
Baidu
map