Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Heterodyne polarization interference imaging spectroscopy

Cai Qi-Sheng Huang Min Han Wei Cong Lin-Xiao Lu Xiang-Ning

Citation:

Heterodyne polarization interference imaging spectroscopy

Cai Qi-Sheng, Huang Min, Han Wei, Cong Lin-Xiao, Lu Xiang-Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A novel heterodyne polarization interference imaging spectroscopy (HPⅡS) based on a Savart polariscope is proposed in this paper. The HPⅡS is modified by introducing a pair of parallel polarization gratings into the static polarization interference imaging spectrometer. Because of the introduced parallel polarization gratings, the lateral displacements of the two beams split by the Savart polariscope vary with wavenumber. The frequency of the interferogram obtained on the detector is related to wavenumber. Like the spatial heterodyne spectrometer where the two end mirrors in a Michelson interferometer are replaced with two matched diffraction gratings, the zero frequency of the interferogram generated in HPⅡS corresponds to a heterodyne wavenumber instead of the zero wavenumber in a non-heterodyne spectrometer. Due to the heterodyne characteristics, a high spectral resolution can be achieved using a small number of sampling points. In addition, there is no slit in HPⅡS and it is an imaging Fourier transform spectrometer that records a two-dimensional image of a scene superimposed with interference curves. It is a temporally and spatially combined modulated Fourier transform spectrometer and the interferogram of one point from the scene is generated by picking up the corresponding pixels from a sequence of images which are acquired by scanning the scene. As a true imaging spectrometer, HPⅡS also has high sensitivity and high signal-to-noise ratio. In this paper, the basic principle of HPⅡS is studied. The optical path difference produced by the Savart polariscope and the parallel polarization gratings is calculated. The interferogram expression, the spectral resolution, and the spectrum reconstruction method are elaborated. As the relationship between the frequency of the interferogram and the wavenumber of the incident light is nonlinear, the input spectrum can be recovered using Fourier transform combined with the method of stationary phase. Also, the matrix inversion method can be used to recover the input spectrum. Finally, a design example of HPⅡS is given. The interferogram is simulated, and the recovered spectrum shows good agreement with the input spectrum. In the design example, the spectral range is 16667-18182 cm-1(550-600 nm), and the number of sampling points is 500. The spectral resolution of HPⅡS is 6.06 cm-1, which is 12 times smaller than that in a non-heterodyne spectrometer with the same spectral range and sampling numbers. HPⅡS has the advantages of compact structure, high optical throughput, strong stability, and high spectral resolution. It is especially suitable for hyperspectral detection with ultra-small, high stability, and high sensitivity.
      Corresponding author: Cai Qi-Sheng, caiqs@aoe.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC0201100) and the National Natural Science Foundation of China (Grant No. 61640422).
    [1]

    Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096

    [2]

    Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035

    [3]

    Padgett M J, Harvey A R 1995 Rev. Sci. Instrum. 66 2807

    [4]

    Courtial J, Patterson B A, Harvey A R, Sibbett W, Padgett M J 1996 Appl. Opt. 35 6698

    [5]

    Smith W H, Hammer P D 1996 Appl. Opt. 35 2902

    [6]

    Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228

    [7]

    Zhang C M, Xiang L B, Zhao B C 2000 Proc. SPIE 4087 957

    [8]

    Zhang C M, Xiang L B, Zhao B C, Yuan X J 2002 Opt. Commun. 203 21

    [9]

    Zhang C M, Zhao B C, Xiang L B, Yang J F 2001 Acta Opt. Sin. 21 192(in Chinese)[张淳民, 赵葆常, 相里斌, 杨建峰2001光学学报21 192]

    [10]

    Dohi T, Suzuki T 1971 Appl. Opt. 10 1137

    [11]

    Roesler F L, Harlander J M 1990 Proc. SPIE 1318 234

    [12]

    Harlander J M, Roesler F L, Cardon J G, Englert C R, Conway R R 2002 Appl. Opt. 41 1343

    [13]

    Harlander J M, Roesler F L, Englert C R, Cardon J G, Conway R R, Brown C M, Wimperis J 2003 Appl. Opt. 42 2829

    [14]

    Cai Q S, Xiang L B, Du S S 2015 Opt. Commun. 355 239

    [15]

    Xiang L B, Cai Q S, Du S S 2015 Opt. Commun. 357 148

    [16]

    Kudenov M W, Miskiewicz M N, Escuti M J, Dereniak E L 2012 Opt. Lett. 37 4413

    [17]

    Oh C, Escuti M J 2008 Opt. Lett. 33 2287

    [18]

    Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283

    [19]

    Framcon M, Mallick S 1971 Polarization Interferometers (New York:Wiley) p19

    [20]

    Cai Q S 2016 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[才啟胜2016博士学位论文(合肥:中国科学技术大学)]

    [21]

    Murray J D 1984 Asymptotic Analysis (New York:Springer) pp72-85

    [22]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [23]

    Du S S, Wang Y M, Tao R 2013 Acta Opt. Sin. 33 0830003(in Chinese)[杜述松, 王咏梅, 陶然2013光学学报33 0830003]

    [24]

    Zhang C M 2010 Interference Imaging Spectroscopy (Beijing:Science Press) p44(in Chinese)[张淳民2010干涉成像光谱技术(北京:科学出版社)第44页]

  • [1]

    Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096

    [2]

    Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035

    [3]

    Padgett M J, Harvey A R 1995 Rev. Sci. Instrum. 66 2807

    [4]

    Courtial J, Patterson B A, Harvey A R, Sibbett W, Padgett M J 1996 Appl. Opt. 35 6698

    [5]

    Smith W H, Hammer P D 1996 Appl. Opt. 35 2902

    [6]

    Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228

    [7]

    Zhang C M, Xiang L B, Zhao B C 2000 Proc. SPIE 4087 957

    [8]

    Zhang C M, Xiang L B, Zhao B C, Yuan X J 2002 Opt. Commun. 203 21

    [9]

    Zhang C M, Zhao B C, Xiang L B, Yang J F 2001 Acta Opt. Sin. 21 192(in Chinese)[张淳民, 赵葆常, 相里斌, 杨建峰2001光学学报21 192]

    [10]

    Dohi T, Suzuki T 1971 Appl. Opt. 10 1137

    [11]

    Roesler F L, Harlander J M 1990 Proc. SPIE 1318 234

    [12]

    Harlander J M, Roesler F L, Cardon J G, Englert C R, Conway R R 2002 Appl. Opt. 41 1343

    [13]

    Harlander J M, Roesler F L, Englert C R, Cardon J G, Conway R R, Brown C M, Wimperis J 2003 Appl. Opt. 42 2829

    [14]

    Cai Q S, Xiang L B, Du S S 2015 Opt. Commun. 355 239

    [15]

    Xiang L B, Cai Q S, Du S S 2015 Opt. Commun. 357 148

    [16]

    Kudenov M W, Miskiewicz M N, Escuti M J, Dereniak E L 2012 Opt. Lett. 37 4413

    [17]

    Oh C, Escuti M J 2008 Opt. Lett. 33 2287

    [18]

    Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283

    [19]

    Framcon M, Mallick S 1971 Polarization Interferometers (New York:Wiley) p19

    [20]

    Cai Q S 2016 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[才啟胜2016博士学位论文(合肥:中国科学技术大学)]

    [21]

    Murray J D 1984 Asymptotic Analysis (New York:Springer) pp72-85

    [22]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [23]

    Du S S, Wang Y M, Tao R 2013 Acta Opt. Sin. 33 0830003(in Chinese)[杜述松, 王咏梅, 陶然2013光学学报33 0830003]

    [24]

    Zhang C M 2010 Interference Imaging Spectroscopy (Beijing:Science Press) p44(in Chinese)[张淳民2010干涉成像光谱技术(北京:科学出版社)第44页]

  • [1] Ren Li-Qing, Yang Qiang, Ji Chao-Ran, Chi Jiao, Hu Yun, Wei Ying-Chun, Xu Jin-You. Spatial orientation of CdS nanowires based on second harmonic generation spectroscopy and microscopic imaging. Acta Physica Sinica, 2024, 73(16): 164207. doi: 10.7498/aps.73.20240753
    [2] Xiang Meng, He Piao, Wang Tian-Yu, Yuan Lin, Deng Kai, Liu Fei, Shao Xiao-Peng. Computational polarized colorful Fourier ptychography imaging: a novel information reuse technique of polarization of scattering light field. Acta Physica Sinica, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [3] Gao Chen-Dong, Zhao Ming-Lin, Lu De-He, Dou Jian-Tai. Underwater polarization imaging based on two-layer multi-index optimization. Acta Physica Sinica, 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [4] Sun Xue-Ying, Liu Fei, Duan Jing-Bo, Niu Geng-Tian, Shao Xiao-Peng. Broadband scattering imaging technology based on common-mode rejection of polarization characteristic. Acta Physica Sinica, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [5] Liu Fei, Sun Shao-Jie, Han Ping-Li, Zhao Lin, Shao Xiao-Peng. Clear underwater vision in non-uniform scattering field by low-rank-and-sparse-decomposition-based olarization imaging. Acta Physica Sinica, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [6] Cai Qi-Sheng,  Huang Min,  Han Wei,  Liu Yi-Xuan,  Lu Xiang-Ning. Simulation of multiband imaging technology of large aperture spatial heterodyne imaging spectroscopy. Acta Physica Sinica, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [7] Lü Hao, You Kai, Lan Yan-Yan, Gao Dong, Zhao Qiu-Ling, Wang Xia. Fabrication of two-dimensional micro-nano photonic structures by symmetry-lost beams interference. Acta Physica Sinica, 2017, 66(21): 217801. doi: 10.7498/aps.66.217801
    [8] Li Jian-Xin, Bai Cai-Xun, Liu Qin, Shen Yan, Xu Wen-Hui, Xu Yi-Xuan. Beam shearing characteristic analysis of interferometric hyperspectral imaging system. Acta Physica Sinica, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [9] Zheng Dong-Hui, Li Jin-Peng, Chen Lei, Zhu Wen-Hua, Han Zhi-Gang, Wulan Tu-Ya, Guo Ren-Hui. Spatial phase-shifting polarization point-piffraction interferometer for wavefront measurement. Acta Physica Sinica, 2016, 65(11): 114203. doi: 10.7498/aps.65.114203
    [10] Li Ke-Wu, Wang Zhi-Bin, Yang Chang-Qing, Zhang Rui, Wang Yao-Li, Song Yan-Peng. A new technique of full polarization hyperspectral imaging based on acousto-optic tunable filter and liquid crystal variable retarder. Acta Physica Sinica, 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [11] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-Ⅱ. optical design and analysis. Acta Physica Sinica, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [12] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-I. concept, principle, and operation. Acta Physica Sinica, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [13] He Wen-Qi, Peng Xiang, Meng Xiang-Feng, Liu Xiao-Li. Multi-level authentication based on two-beam interference. Acta Physica Sinica, 2013, 62(6): 064205. doi: 10.7498/aps.62.064205
    [14] Ding Shi-Jing, Huang Liu-Hong, Li Yue-Bo, Xue Fan-Xi. A novel free-space method of mearsuring of electromagnetic parameters based on the resonance property of reflectivity. Acta Physica Sinica, 2012, 61(22): 220601. doi: 10.7498/aps.61.220601
    [15] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [16] Zhao Jian-Ling, Wu Ling-An. Two variable optical delay schemes based on polarization and interference. Acta Physica Sinica, 2010, 59(5): 3260-3263. doi: 10.7498/aps.59.3260
    [17] Xu Zhi-Jun, Li Peng-Hua. Second interference and amplification effect of a Bose-condensed gas. Acta Physica Sinica, 2007, 56(10): 5607-5612. doi: 10.7498/aps.56.5607
    [18] Xu Zhi-Jun, Wang Dong-Mei, Li Zhen. Interference of Bose-condensed gas in a 1D optical lattice. Acta Physica Sinica, 2007, 56(6): 3076-3082. doi: 10.7498/aps.56.3076
    [19] Yao Zhi-Xin, Zhong Jian-Wei, Mao Bang-Ning, Chen Gang, Pan Bai-Liang. Quantum description of interference effect with two holes. Acta Physica Sinica, 2007, 56(6): 3185-3191. doi: 10.7498/aps.56.3185
    [20] Ren Guo-Bin, Wang Zhi, Jian Shui-Sheng, Lou Shu-Qin. Modal interference in dual-core photonic crystal fibers. Acta Physica Sinica, 2004, 53(8): 0-0. doi: 10.7498/aps.53.0
Metrics
  • Abstract views:  7155
  • PDF Downloads:  245
  • Cited By: 0
Publishing process
  • Received Date:  15 March 2017
  • Accepted Date:  04 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map