Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transmission of electrons through the conical glass capillary with the grounded conducting outer surface

Qian Li-Bing Li Peng-Fei Jin Bo Jin Ding-Kun Song Guang-Yin Zhang Qi Wei Long Niu Ben Wan Cheng-Liang Zhou Chun-Lin Arnold Milenko Müller Max Dobeli Song Zhang-Yong Yang Zhi-Hu Reinhold Schuch Zhang Hong-Qiang Chen Xi-Meng

Citation:

Transmission of electrons through the conical glass capillary with the grounded conducting outer surface

Qian Li-Bing, Li Peng-Fei, Jin Bo, Jin Ding-Kun, Song Guang-Yin, Zhang Qi, Wei Long, Niu Ben, Wan Cheng-Liang, Zhou Chun-Lin, Arnold Milenko Müller, Max Dobeli, Song Zhang-Yong, Yang Zhi-Hu, Reinhold Schuch, Zhang Hong-Qiang, Chen Xi-Meng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The transmission of 1.5 keV-electrons through a conical glass capillary is reported. This study aims to understand the so-called guiding effect for the negatively charged particles (e.g. electrons). The guiding mechanism is understood quite well with positively charged particles in particular highly charged ions, but not clear with electrons, i.e., even the basic scheme mediated by the existence of negative charge patches to guide the electrons is still somewhat controversial. The study of the charging-up dynamics causing the electrons transport inside the capillary will shed light on this issue. In order to perform this, a data acquisition system has been setup to follow the time evolution of the twodimensional angular distribution of the transmitted electrons. The electrons are detected by the multi-channel plate (MCP) detector with a phosphor screen. The image from the phosphor screen is recorded by a charge-coupled device camera. The timing signals for the detected events are extracted from the back stack of the MCP detector and recorded by the data acquisition system, synchronized with the acquired images. The electron beam has a size of 0.5 mm0.5 mm and a divergence of less than 0.35. The inner diameter of the straight part of the capillary is 1.2 mm and the exit diameter is 225 m. A small conducting aperture of 0.3 mm in diameter is placed at the entrance of the capillary. Two-dimensional angular distribution of the transmitted electrons through conical glass capillary and its time evolution are measured. The results show that the transmission rate decreases and reaches to a constant value for the completely discharged glass capillary with time going by. The centroid of the angular distribution moves to an asymptotic value while the width remains unchanged. These transmission characteristics are different from those indicated in our previous work (2016 Acta Phys. Sin. 65 204103). The difference originates from the different manipulations of the capillary outer surface. A conducting layer is coated on the outer surface of the capillary and grounded in this work. This isolates various discharge/charge channels and forms a new stable discharge channel. The transmission rate as a function of the tilt angle shows that the allowed transmission occurs at the tilt angle limited by the geometrical factors, i.e., the geometrical opening angle given by the aspect ratio as well as the beam divergence. The transmission characteristics suggest that most likely there are formed no negative patches to facilitate the electron transmission through the glass capillary at this selected beam energy. It is different from that of highly charged ions, where the formation of the charge patches prohibits the close collisions between the following ions and guides them out of the capillary.
      Corresponding author: Zhang Hong-Qiang, zhanghq@lzu.edu.cn;chenxm@lzu.edu.cn ; Chen Xi-Meng, zhanghq@lzu.edu.cn;chenxm@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475075).
    [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [2]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712

    [3]

    Schiessl K, Palfinger W, Tőksi K, Nowotny H, Lemell C, Burgdőrfer J 2005 Phys. Rev. A 72 062902

    [4]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [5]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716

    [6]

    Milosavljević A R, Vkor G, Peić Z D, Kolarž P, ević D, Marinković B P, Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901

    [7]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instrum. Meth. Phys. Res. B 317 105

    [8]

    Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, Ikeda T, Tanis J A 2013 Phys. Scr. T156 014057

    [9]

    Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701

    [10]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711

    [11]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoeks R 2009 Phys. Rev. A 79 022901

    [12]

    Sahana M B, Skog P, Vikor G, Rajendra Kumar R T, Schuch R 2006 Phys. Rev. A 73 040901

    [13]

    Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75 042901

    [14]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Meth. Phys. Res. Sect. B 258 145

    [15]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, L X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902

    [16]

    Schiessl K, Tőksi K, Solleder B, Lemell C, Burgdőrfer J 2009 Phys. Rev. Lett. 102 163201

    [17]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202

    [18]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]

    [19]

    Wang W, Chen J, Yu D Y, Wu Y H, Zhang M W, Cai X H 2011 High Power Laser and Particle Beams 23 1065 (in Chinese) [王伟, 陈婧, 于得洋, 武晔虹, 张明武, 蔡晓红 2011 强激光与粒子束 23 1065]

    [20]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2010 Acta Phys. Sin. 59 222 (in Chinese) [陈益峰, 陈熙萌, 娄凤君, 徐进章, 邵剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫 2010 59 222]

    [21]

    Lemell C, Burgdőrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [22]

    Stolterfoht N, Yasunori Y 2016 Phys. Rep. 629 1

    [23]

    ALPHA Collaboration, Andresen G B, Bertsche W, Bowe P D, Bray C C, Butler E, Cesar C L, Chapman S, Charlton M, Fajans J, Fujiwara M C, Gill D R, Hangst J S, Hardy W N, Hayano R S, Hayden M E, Humphries A J, Hydomako R, Jrgensen L V, Kerrigan S, Kurchaninov L, Lambo R, Madsen N, Nolan P, Olchanski K, Olin A, Povilus A P, Pusa P, Sarid E, Seif S, Silveira D M, Storey J W, Thompson R I, Vander D P, Yamazaki Y 2009 Rev. Sci. Instrum. 80 123701

    [24]

    Varialee V 2015 Phys. Procedia 66 242

    [25]

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103 (in Chinese) [万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103]

  • [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [2]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712

    [3]

    Schiessl K, Palfinger W, Tőksi K, Nowotny H, Lemell C, Burgdőrfer J 2005 Phys. Rev. A 72 062902

    [4]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [5]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716

    [6]

    Milosavljević A R, Vkor G, Peić Z D, Kolarž P, ević D, Marinković B P, Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901

    [7]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instrum. Meth. Phys. Res. B 317 105

    [8]

    Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, Ikeda T, Tanis J A 2013 Phys. Scr. T156 014057

    [9]

    Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701

    [10]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711

    [11]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhsz Z, Bodewits E, Dang H M, Hoeks R 2009 Phys. Rev. A 79 022901

    [12]

    Sahana M B, Skog P, Vikor G, Rajendra Kumar R T, Schuch R 2006 Phys. Rev. A 73 040901

    [13]

    Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75 042901

    [14]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Meth. Phys. Res. Sect. B 258 145

    [15]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, L X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902

    [16]

    Schiessl K, Tőksi K, Solleder B, Lemell C, Burgdőrfer J 2009 Phys. Rev. Lett. 102 163201

    [17]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202

    [18]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]

    [19]

    Wang W, Chen J, Yu D Y, Wu Y H, Zhang M W, Cai X H 2011 High Power Laser and Particle Beams 23 1065 (in Chinese) [王伟, 陈婧, 于得洋, 武晔虹, 张明武, 蔡晓红 2011 强激光与粒子束 23 1065]

    [20]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2010 Acta Phys. Sin. 59 222 (in Chinese) [陈益峰, 陈熙萌, 娄凤君, 徐进章, 邵剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫 2010 59 222]

    [21]

    Lemell C, Burgdőrfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [22]

    Stolterfoht N, Yasunori Y 2016 Phys. Rep. 629 1

    [23]

    ALPHA Collaboration, Andresen G B, Bertsche W, Bowe P D, Bray C C, Butler E, Cesar C L, Chapman S, Charlton M, Fajans J, Fujiwara M C, Gill D R, Hangst J S, Hardy W N, Hayano R S, Hayden M E, Humphries A J, Hydomako R, Jrgensen L V, Kerrigan S, Kurchaninov L, Lambo R, Madsen N, Nolan P, Olchanski K, Olin A, Povilus A P, Pusa P, Sarid E, Seif S, Silveira D M, Storey J W, Thompson R I, Vander D P, Yamazaki Y 2009 Rev. Sci. Instrum. 80 123701

    [24]

    Varialee V 2015 Phys. Procedia 66 242

    [25]

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103 (in Chinese) [万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103]

  • [1] Niu Shu-Tong, Zhan Xin, Hua Qiang, Li Wen-Teng, Zhou Li-Hua, Yang Ting-Gui. Study on transport process of 16 keV Cions in tapered glass capillary: Role of capillary tilt angles. Acta Physica Sinica, 2024, 73(5): 053401. doi: 10.7498/aps.73.20231513
    [2] Yuan Tian-Yu, Shao Shang-Kun, Sun Xue-Peng, Li Hui-Quan, Hua Lu, Sun Tian-Xi. Design of a single glass tube optical lens for soft X-ray laser decoherence. Acta Physica Sinica, 2023, 72(3): 034203. doi: 10.7498/aps.72.20221917
    [3] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng. Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding. Acta Physica Sinica, 2022, 71(7): 074101. doi: 10.7498/aps.71.20212036
    [5] Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Zhang Hao-Wen, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng. Dynamics of low energy electrons transmitting through straight glass capillary: Tilt angle dependence. Acta Physica Sinica, 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [6] Qin Li, Guo Hong-Xia, Zhang Feng-Qi, Sheng Jiang-Kun, Ouyang Xiao-Ping, Zhong Xiang-Li, Ding Li-Li, Luo Yin-Hong, Zhang Yang, Ju An-An. Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons. Acta Physica Sinica, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [7] Wan Cheng-Liang, Li Peng-Fei, Qian Li-Bing, Jin Bo, Song Guang-Yin, Gao Zhi-Min, Zhou Li-Hua, Zhang Qi, Song Zhang-Yong, Yang Zhi-Hu, Shao Jian-Xiong, Cui Ying, Reinhold Schuch, Zhang Hong-Qiang, Chen Xi-Meng. Dynamics of slow electrons transmitting through straight glass capillary and tapered glass capillary. Acta Physica Sinica, 2016, 65(20): 204103. doi: 10.7498/aps.65.204103
    [8] Wang Cheng-Wei, Zhao Quan-Zhong, Qian Jing, Huang Yuan-Yuan, Wang Guan-De, Li Yang-Bo, Bai Feng, Fan Wen-Zhong, Li Hong-Jin. Measuring the internal temperature of dielectrics machined by the ultrashort laser pulse through the black-body irradiation method. Acta Physica Sinica, 2016, 65(12): 125201. doi: 10.7498/aps.65.125201
    [9] Liu Jiang-Tao, Huang Jie-Hui, Xiao Wen-Bo, Hu Ai-Rong, Wang Jian-Hui. The influence of gate voltage on electron transport in the graphene field-effect transistor under strong laser field. Acta Physica Sinica, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [10] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [11] Qin Wei, Zhang Zhen-Hua, Liu Xin-Hai. Effects of curvature on the electronic structures of single-walled carbon nanotubes. Acta Physica Sinica, 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [12] Zhang Tao. A cause of energy exchange between light and electron. Acta Physica Sinica, 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [13] Li Ping-Jian, Zhang Wen-Jing, Zhang Qi-Feng, Wu Jin-Lei. Nanoelectronic logic circuits with carbon nanotube transistors. Acta Physica Sinica, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [14] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [15] Xia Zhi-Lin, Fan Zheng-Xiu, Shao Jian-Da. Electrons-phonons collision velocity in films radiated by laser. Acta Physica Sinica, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [16] Chen Zhen-Ping, Zhang Jin-Cang, Cao Gui-Xin, Cao Shi-Xun. . Acta Physica Sinica, 2002, 51(9): 2150-2154. doi: 10.7498/aps.51.2150
    [17] CHENG XING-KUI, ZHOU JUN-MING, HUANG QI. WAVING OF ELECTRON IN SUPERLATTICE. Acta Physica Sinica, 2001, 50(3): 536-539. doi: 10.7498/aps.50.536
    [18] HE BIN, CHANG TIE-QIANG, ZHANG JIA-TAI, XU LIN-BAO. INVESTIGATION OF THE LONGITUDINAL MOTION OF ELECTRONS IN THE PLASMAS WITH ULTRA-INTENSE LASER PULSE. Acta Physica Sinica, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
    [19] TONG GUO-PING. TRANSFER-INTEGRAL CALCULATION FOR CONDUCTING POLYMERS. Acta Physica Sinica, 1994, 43(8): 1326-1330. doi: 10.7498/aps.43.1326
    [20] REN YAN-RU. ORBITAL SPIN-SPLITTING FACTORS FOR CONDUCTION ELECTRONS IN LEAD: DE HAAS-VAN ALPHEN STUDIES WITH MAGNETIC FEEDBACK. Acta Physica Sinica, 1989, 38(10): 1559-1568. doi: 10.7498/aps.38.1559
Metrics
  • Abstract views:  5622
  • PDF Downloads:  206
  • Cited By: 0
Publishing process
  • Received Date:  09 February 2017
  • Accepted Date:  13 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map