Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2

Liang Shuai-Xi Qin Min Duan Jun Fang Wu Li Ang Xu Jin Lu Xue Tang Ke Xie Pin-Hua Liu Jian-Guo Liu Wen-Qing

Citation:

Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2

Liang Shuai-Xi, Qin Min, Duan Jun, Fang Wu, Li Ang, Xu Jin, Lu Xue, Tang Ke, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nitrogen dioxide (NO2) is an important trace gas in the troposphere and plays a vital role in many aspects of the chemistry of the atmosphere. Accurate measurement of NO2 is the primary step to understand its role in atmospheric chemistry and to establish effective pollution prevention policies. Relatively few measurements of the NO2 profile in troposphere by using point-type instruments with high temporal resolution have been carried out in China. Due to the relatively poor measurement environment on airborne platform, the measurement system requires good anti-vibration ability, stability and environmental adaptability. A home-built incoherent broadband cavity enhanced absorption spectrometer (IBBCEAS) on the airborne platform is presented in this paper, and applied to high temporal resolution observations of the actual atmospheric NO2 spatial distribution. According to the strong absorption of NO2 in a wavelength range from 449 nm to 470 nm, we choose a high-power 457 nm light-emitting diode (LED) as a light source. A Peltier is used to control LED temperature and to stabilize the LED temperature at (200.1)℃. The pure PFA material optical cavity and sampling tube are used to reduce wall loss. And we choose the highly reflecting mirrors (reflectivity R0.9999@440-450 nm) to improve the effective optical path. A 2 m filter is used at the inlet of instrument to remove most of the particulate matter in the sample flows, which reduce the effect of particulate matter on the effective path length. In order to meet the requirement for time resolution in airborne measurement, we use an off-axis paraboloic mirror instead of an achromatic lens to improve the optical coupling efficiency. The reflectivity of the highly reflecting mirror is calibrated by the difference in Rayleigh scattering between He and N2. And the optimum averaging time of the IBBCEAS instrument is confirmed to be 1000 s by the Allan variance analysis. Detection limit (1) of 10 ppt for NO2 is achieved with an optimum acquisition time of 1000 s. Concentrations of NO2 are recorded and compared with data from a long path different optical absorption spectroscopy instrument, and the results show good agreement with each other. The linear correlation coefficient R2 is 0.86 in a slope of 0.92 with an offset of -0.402 ppb. The IBBCEAS system is deployed on an airborne platform, and the detection limit is 95 ppt (1) with a time resolution of 2 s. The profile of tropospheric NO2 by airborne observation is obtained over Shijiazhuang in Northern China. IBBCEAS system in the airborne platform shows good stability.
      Corresponding author: Qin Min, mqin@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91544104, 41571130023, 61275151) and the National High Technology Research and Development Program of China (Grant No. 2014AA06A508).
    [1]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916

    [2]

    Lee J, Kim K H, Kim Y J, Lee J 2008 J. Environ. Manage. 86 750

    [3]

    Lee J S, Kim Y J, Kuk B, Geyer A, Platt U 2005 Environ. Monit. Assess. 104 281

    [4]

    Li Y Q, Demerjian K L, Zahniser M S, Nelson D D, Mcmanus J B, Herndon S C 2004 J. Geophys. Res. 109 D16S08

    [5]

    Thornton J A, Wooldridge P J, Cohen R C 2000 Anal. Chem. 72 528

    [6]

    Bucsela E J, Perring A E, Cohen R C, Boersma K F, Celarier E A, Gleason J F, Wenig M O, Bertram T H, Wooldridge P J, Dirksen R 2008 J. Geophys. Res. 42 4480

    [7]

    Boersma K F, Jacob D J, Bucsela E J, Perring A E, Dirksen R, JvdA R, Yantosca R M, Park R J, Wenig M O, Bertram T H 2008 Atmos. Environ. 42 4480

    [8]

    Wagner N L, Dub W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B, Brown S S 2011 Atmos. Meas. Tech. 4 1227

    [9]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Measur. Tech. 4 1759

    [10]

    Volkamer R, Baidar S, Campos T L, Coburn S, DiGangi J P, Dix B, Eloranta E W, Koenig T K, Morley B, Ortega I, Pierce B R, Reeves M, Sinreich R, Wang S, Zondlo M A, Romashkin P A 2015 Atmos. Measur. Tech. 8 2121

    [11]

    Min K E, Washenfelder R A, Dub W P, Langford A O, Edwards P M, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y, Brown S S 2015 Atmos. Meas. Tech. Discuss. 8 11209

    [12]

    Heland J, Schlager H, Richter A, Burrows J P 2002 Geophys. Res. Lett. 29 44

    [13]

    Petritoli A, Bonasoni P, Giovanelli G, Ravegnani F, Kostadinov I, Bortoli D, Weiss A, Schaub D, Richter A, Fortezza F 2004 J. Geophys. Res. 109 D15307

    [14]

    Martin R V, Parrish D D, Ryerson T B, Nicks D K, Chance K, Kurosu T P, Jacob D J, Sturges E D, Fried A, Wert B P 2004 J. Geophys. Res. 109 D24307

    [15]

    Lamsal L N, Krotkov N A, Celarier E A, Swartz W H, Pickering K E, Bucsela E J, Gleason J F, Martin R V, Philip S, Irie H, Cede A, Herman J, Weinheimer A, Szykman J J, Knepp T N 2014 Atmos. Chem. Phys. 14 11587

    [16]

    Ventrillard-Courtillot I, O'Brien E S, Kassi S, Mjean G, Romanini D 2010 Appl. Phys. B 101 661

    [17]

    Hoch D J, Buxmann J, Sihler H, Phler D, Zetzsch C, Platt U 2014 Atmos. Measur. Tech. 7 199

    [18]

    Washenfelder R A, Attwood A R, Flores J M, Rudich Y, Brown S S 2015 Atmos. Meas. Tech. Discuss. 8 9927

    [19]

    Ling L, Xie P, Qin M, Fang W, Jiang Y, Hu R, Zheng N 2013 Chin. Opt. Lett. 11 77

    [20]

    Dong M L, Xu X Z, Zhao W X, Gu X J, Hu C J, Gai Y B, Gao X M, Huang W, Zhang W J 2014 J. Appl. Opt. 35 264 (in Chinese) [董美丽, 徐学哲, 赵卫雄, 顾学军, 胡长进, 盖艳波, 高晓明, 黄伟, 张为俊 2014 应用光学 35 264]

    [21]

    Duan J, Qin M, Fang W, Ling L Y, Hu R Z, Lu X, Shen L L, Wang D, Xie P H, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 180701 (in Chinese) [段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清 2015 64 180701]

    [22]

    Wu T, Zha Q, Chen W, Xu Z, Wang T, He X 2014 Atmos. Environ. 95 544

    [23]

    Wu F C, Li A, Xie P H, Chen H, Ling L Y, Xu J, Mou F S, Zhang J, Shen J C, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 114211 (in Chinese) [吴丰成, 李昂, 谢品华, 陈浩, 凌六一, 徐晋, 牟福生, 张杰, 申进朝, 刘建国, 刘文清 2015 64 114211]

    [24]

    Wang T, Wang P C, Yu H, Zhang X Y, Zhou B, Si F Q, Wang S S, Bai W G, Zhou H J, Zhao H 2013 Acta Phys. Sin. 62 054206 (in Chinese) [王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒 2013 62 054206]

    [25]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779

    [26]

    Shardanand, Rao A D P 1977 NASA Technical Note (Washington D. C: National Aeronautics and Space Administration)

    [27]

    Sneep M, Ubachs W 2005 J. Quantit. Spectrosc. Radiat. Trans. 92 293

    [28]

    Werle P, Mcke R, Slemr F 1993 Appl. Phys. B 57 131

    [29]

    Wu T, Zhao W, Chen W, Zhang W, Gao X 2008 Appl. Phys. B 94 85

  • [1]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916

    [2]

    Lee J, Kim K H, Kim Y J, Lee J 2008 J. Environ. Manage. 86 750

    [3]

    Lee J S, Kim Y J, Kuk B, Geyer A, Platt U 2005 Environ. Monit. Assess. 104 281

    [4]

    Li Y Q, Demerjian K L, Zahniser M S, Nelson D D, Mcmanus J B, Herndon S C 2004 J. Geophys. Res. 109 D16S08

    [5]

    Thornton J A, Wooldridge P J, Cohen R C 2000 Anal. Chem. 72 528

    [6]

    Bucsela E J, Perring A E, Cohen R C, Boersma K F, Celarier E A, Gleason J F, Wenig M O, Bertram T H, Wooldridge P J, Dirksen R 2008 J. Geophys. Res. 42 4480

    [7]

    Boersma K F, Jacob D J, Bucsela E J, Perring A E, Dirksen R, JvdA R, Yantosca R M, Park R J, Wenig M O, Bertram T H 2008 Atmos. Environ. 42 4480

    [8]

    Wagner N L, Dub W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B, Brown S S 2011 Atmos. Meas. Tech. 4 1227

    [9]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Measur. Tech. 4 1759

    [10]

    Volkamer R, Baidar S, Campos T L, Coburn S, DiGangi J P, Dix B, Eloranta E W, Koenig T K, Morley B, Ortega I, Pierce B R, Reeves M, Sinreich R, Wang S, Zondlo M A, Romashkin P A 2015 Atmos. Measur. Tech. 8 2121

    [11]

    Min K E, Washenfelder R A, Dub W P, Langford A O, Edwards P M, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y, Brown S S 2015 Atmos. Meas. Tech. Discuss. 8 11209

    [12]

    Heland J, Schlager H, Richter A, Burrows J P 2002 Geophys. Res. Lett. 29 44

    [13]

    Petritoli A, Bonasoni P, Giovanelli G, Ravegnani F, Kostadinov I, Bortoli D, Weiss A, Schaub D, Richter A, Fortezza F 2004 J. Geophys. Res. 109 D15307

    [14]

    Martin R V, Parrish D D, Ryerson T B, Nicks D K, Chance K, Kurosu T P, Jacob D J, Sturges E D, Fried A, Wert B P 2004 J. Geophys. Res. 109 D24307

    [15]

    Lamsal L N, Krotkov N A, Celarier E A, Swartz W H, Pickering K E, Bucsela E J, Gleason J F, Martin R V, Philip S, Irie H, Cede A, Herman J, Weinheimer A, Szykman J J, Knepp T N 2014 Atmos. Chem. Phys. 14 11587

    [16]

    Ventrillard-Courtillot I, O'Brien E S, Kassi S, Mjean G, Romanini D 2010 Appl. Phys. B 101 661

    [17]

    Hoch D J, Buxmann J, Sihler H, Phler D, Zetzsch C, Platt U 2014 Atmos. Measur. Tech. 7 199

    [18]

    Washenfelder R A, Attwood A R, Flores J M, Rudich Y, Brown S S 2015 Atmos. Meas. Tech. Discuss. 8 9927

    [19]

    Ling L, Xie P, Qin M, Fang W, Jiang Y, Hu R, Zheng N 2013 Chin. Opt. Lett. 11 77

    [20]

    Dong M L, Xu X Z, Zhao W X, Gu X J, Hu C J, Gai Y B, Gao X M, Huang W, Zhang W J 2014 J. Appl. Opt. 35 264 (in Chinese) [董美丽, 徐学哲, 赵卫雄, 顾学军, 胡长进, 盖艳波, 高晓明, 黄伟, 张为俊 2014 应用光学 35 264]

    [21]

    Duan J, Qin M, Fang W, Ling L Y, Hu R Z, Lu X, Shen L L, Wang D, Xie P H, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 180701 (in Chinese) [段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清 2015 64 180701]

    [22]

    Wu T, Zha Q, Chen W, Xu Z, Wang T, He X 2014 Atmos. Environ. 95 544

    [23]

    Wu F C, Li A, Xie P H, Chen H, Ling L Y, Xu J, Mou F S, Zhang J, Shen J C, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 114211 (in Chinese) [吴丰成, 李昂, 谢品华, 陈浩, 凌六一, 徐晋, 牟福生, 张杰, 申进朝, 刘建国, 刘文清 2015 64 114211]

    [24]

    Wang T, Wang P C, Yu H, Zhang X Y, Zhou B, Si F Q, Wang S S, Bai W G, Zhou H J, Zhao H 2013 Acta Phys. Sin. 62 054206 (in Chinese) [王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒 2013 62 054206]

    [25]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779

    [26]

    Shardanand, Rao A D P 1977 NASA Technical Note (Washington D. C: National Aeronautics and Space Administration)

    [27]

    Sneep M, Ubachs W 2005 J. Quantit. Spectrosc. Radiat. Trans. 92 293

    [28]

    Werle P, Mcke R, Slemr F 1993 Appl. Phys. B 57 131

    [29]

    Wu T, Zhao W, Chen W, Zhang W, Gao X 2008 Appl. Phys. B 94 85

  • [1] Ye Fan, Li Su-Wen, Mou Fu-Sheng, Wang Song, Wang Zhi-Duo, Tang Yu-Jie, Luo Jing. Research and application of differential optical absorption two-dimensional detection system for rotorcraft unmanned aerial vehicle. Acta Physica Sinica, 2024, 73(18): 180701. doi: 10.7498/aps.73.20240909
    [2] Meng Fan-Hao, Qin Min, Fang Wu, Duan Jun, Tang Ke, Zhang He-Lu, Shao Dou, Liao Zhi-Tang, Xie Pin-Hua. Measurements of atmospheric HONO and NO2 utilizing an open-path broadband cavity enhanced absorption spectroscopy based on an iterative algorithm. Acta Physica Sinica, 2022, 71(12): 120701. doi: 10.7498/aps.71.20220150
    [3] Duan Jun, Tang Ke, Qin Min, Wang Dan, Wang Mu-Di, Fang Wu, Meng Fan-Hao, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Broadband cavity enhanced absorption spectroscopy for measuring atmospheric NO3 radical. Acta Physica Sinica, 2021, 70(1): 010702. doi: 10.7498/aps.70.20201066
    [4] Xue Zheng-Yue, Li Jun, Liu Xiao-Hai, Wang Jing-Jing, Gao Xiao-Ming, Tan Tu. Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection. Acta Physica Sinica, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [5] Zhang He-Lu, Qin Min, Fang Wu, Tang Ke, Duan Jun, Meng Fan-Hao, Shao Dou, Hua Hui, Liao Zhi-Tang, Xie Pin-Hua. Quantification of iodine monoxide based on incoherent broadband cavity enhanced absorption spectroscopy. Acta Physica Sinica, 2021, 70(15): 150702. doi: 10.7498/aps.70.20210312
    [6] Bian Xiao-Ge, Zhou Sheng, Zhang Lei, He Tian-Bo, Li Jin-Song. NO2 gas detection based on standard sample regression algorithm and cavity enhanced spectroscopy. Acta Physica Sinica, 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [7] Kou Tian, Yu Lei, Zhou Zhong-Liang, Wang Hai-Yan, Ruan Cheng-Wei, Liu Hong-Qiang. Spectral radiant characteristic of airborne optoelectronic system detecting aerial maneuver target. Acta Physica Sinica, 2017, 66(4): 049501. doi: 10.7498/aps.66.049501
    [8] Han Ge, Gong Wei, Ma Xin, Xiang Cheng-Zhi, Liang Ai-Lin, Zheng Yu-Xin. A ground-based differential absorption lidar for atmospheric vertical CO2 profiling. Acta Physica Sinica, 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [9] Duan Jun, Qin Min, Fang Wu, Ling Liu-Yi, Hu Ren-Zhi, Lu Xue, Shen Lan-Lan, Wang Dan, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric HONO. Acta Physica Sinica, 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [10] Wu Feng-Cheng, Li Ang, Xie Pin-Hua, Chen Hao, Ling liu-Yi, Xu Jin, Mou Fu-Sheng, Zhang Jie, Shen Jin-Chao, Liu Jian-Guo, Liu Wen-Qing. Dectection and distribution of tropospheric NO2 vertical column density based on mobile multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2015, 64(11): 114211. doi: 10.7498/aps.64.114211
    [11] Ling Liu-Yi, Xie Pin-Hua, Lin Pan-Pan, Huang You-Rui, Qin Min, Duan Jun, Hu Ren-Zhi, Wu Feng-Cheng. A concentration retrieval method for incoherent broadband cavity-enhanced absorption spectroscopy based on O2-O2 absorption. Acta Physica Sinica, 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [12] Liu Jin, Si Fu-Qi, Zhou Hai-Jin, Zhao Ming-Jie, Dou Ke, Wang Yu, Liu Wen-Qing. Observation of two-dimensional distributions of NO2 with airborne Imaging DOAS technology. Acta Physica Sinica, 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [13] Wang Ting, Wang Pu-Cai, Yu Huan, Zhang Xing-Ying, Zhou Bin, Si Fu-Qi, Wang Shan-Shan, Bai Wen-Guang, Zhou Hai-Jin, Zhao Heng. Intercomparison of slant column measurements of NO2 by ground-based MAX-DOAS. Acta Physica Sinica, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [14] Wang Yang, Li Ang, Xie Pin-Hua, Chen Hao, Xu Jin, Wu Feng-Cheng, Liu Jian-Guo, Liu Wen-Qing. Retrieving vertical profile of aerosol extinction by multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
    [15] Wang Yang, Li Ang, Xie Pin-Hua, Chen Hao, Mou Fu-Sheng, Xu Jin, Wu Feng-Cheng, Zeng Yi, Liu Jian-Guo, Liu Wen-Qing. Measuring tropospheric vertical distribution and vertical column density of NO2 by multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(20): 200705. doi: 10.7498/aps.62.200705
    [16] Xu Jin, Xie Pin-Hua, Si Fu-Qi, Li Ang, Zhou Hai-Jin, Wu Feng-Cheng, Wang Yang, Liu Jian-Guo, Liu Wen-Qing. The sensitivity study of NO2 vertical profile retrieval by airborne platform. Acta Physica Sinica, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [17] Dong Mei-Li, Zhao Wei-Xiong, Cheng Yue, Hu Chang-Jin, Gu Xue-Jun, Zhang Wei-Jun. Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement. Acta Physica Sinica, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [18] Wang Yang, Xie Pin-Hua, Li Ang, Zeng Yi, Xu Jin, Si Fu-Qi. Measurement of NO2 total vertical columns by direct-sun differential optical absorption spectroscopy in Hefei city. Acta Physica Sinica, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [19] Ling Liu-Yi, Qin Min, Xie Pin-Hua, Hu Ren-Zhi, Fang Wu, Jiang Yu, Liu Jian-Guo, Liu Wen-Qing. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO2 with a LED optical source. Acta Physica Sinica, 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [20] Xu Jin, Xie Pin-Hua, Si Fu-Qi, Li Ang, Liu Wen-Qing. Determination of tropospheric NO2 by airborne multi axis differential optical absorption spectroscopy. Acta Physica Sinica, 2012, 61(2): 024204. doi: 10.7498/aps.61.024204
Metrics
  • Abstract views:  6521
  • PDF Downloads:  268
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2016
  • Accepted Date:  17 January 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map