Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of collision parameter on magnetized electronegative plasma sheath structure

Liu Hui-Ping Zou Xiu Zou Bin-Yan Qiu Ming-Hui

Citation:

Effect of collision parameter on magnetized electronegative plasma sheath structure

Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The structure of an electronegative plasma sheath in an oblique magnetic field is investigated. Moreover, the collisions between positive ions and neutral particles are taken into account. It is assumed that the system consists of hot electrons, hot negative ions, and cold positive ions. Also the negative ions and the electrons are assumed to be described by the Boltzmann distributions of their own temperatures, and the accelerated positive ions are treated by the continuity and momentum balance equations through the sheath region. In addition, it is assumed that the collision cross section has a power law dependence on the positive velocity. After theoretical derivation, an exact expression of sheath criterion is obtained. The numerical simulation results include the density distributions of the positive ions for different invariable ion Mach numbers satisfying Bohm criterion, and the comparison of net space charge distribution between variable and invariable ion Mach numbers. Furthermore, three kinds of charged particle densities, the net space charges, and the spatial electric potentials in the sheath are studied numerically for different collision parameters under the condition of the fixed ion Mach number. The results show that the ion Mach number has not only the lower limit but also the upper limit. The ion Mach number affects the sheath structure by influencing the distribution of the positive ion density, and different conclusions can be obtained because ion Mach number is adopted as variable or invariable value when discussing the effects of the other variables which can result in a variety of the ion Mach numbers on the sheath formation. The reason is that the actual sheath structure modification brought on by the variation of a parameter can be divided into two parts. One is the sheath formation change caused directly by the variation of the parameter, and the other is the sheath formation change caused by the Bohm criterion modification which the variation of the parameter results in. Therefore, an identical ion Mach number should be adopted when studying the direct effects of a parameter variety on plasma sheath structure. In addition, it is concluded that the collisions between positive ions and neutral particles make positive ion density curve higher and electron density curve lower than the case without collisions. Negative ion density does not change significantly no matter whether there exists collision. Besides, there is a peak in the profile of the net space charge while in the presence of ion-neutral collision, and the net space charge peak moves toward the sheath edge. The spatial potential increases and the sheath thickness decreases on account of the presence of the collisions between ions and neutral particles.
      Corresponding author: Liu Hui-Ping, lhp@djtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10605008, 51372026).
    [1]

    Yamada H, Yoshida Z 1992 J. Plasma Phys. 48 229

    [2]

    Femandez-Palop J I, Ballesteros J, Colomer V, Hemandez M A, Dengra A 1995 J. Appl. Phys. 77 2937

    [3]

    Femandez-Palop J I, Colomer V, Ballesteros J, Hemandez M A, Dengra A 1996 Surf. Coat. Technol. 84 341

    [4]

    Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma Phys. 60 81

    [5]

    Li M, Michael A V, Steven K D, Michael J B 2000 IEEE Trans. Plasma Sci. 28 248

    [6]

    Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537

    [7]

    Hatami M M, Shokri B, Niknam A R 2008 Phys. Plasmas 15 123501

    [8]

    Gong Y, Duan P, Zhang J H, Zou X, Liu J Y, Liu Y 2010 Chin. J. Com. Phy. 27 883 (in Chinese)[宫野, 段萍, 张建红, 邹秀, 刘金远, 刘悦2010计算物理 27 883]

    [9]

    Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032

    [10]

    Zou X, Ji Y K, Zou B Y 2010 Acta Phys. Sin. 59 1902 (in Chinese)[邹秀, 籍延坤, 邹滨雁2010 59 1902]

    [11]

    Ghomi H, Khoramabadi M, Shukla P K, Ghorannevis M 2010 J. Appl. Phys. 108 063302

    [12]

    Ghomi H, Khoramabadi M 2010 J. Plasma Phys. 76 247

    [13]

    Zou X, Liu H P, Qiu M H, Sun X H 2011 Chin. Phys. Lett. 28 125201

    [14]

    Ghomi H, Khoramabadi M 2011 J. Fusion Energ. 30 481

    [15]

    Qiu M H, Liu H P, Zou X 2012 Acta Phys. Sin. 61 155204 (in Chinese)[邱明辉, 刘惠平, 邹秀2012 61 155204]

    [16]

    Hatami M M, Shokri B 2013 Phys. Plasmas 20 033506

    [17]

    Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503

    [18]

    Yasserian K, Aslaninejad M, Borghei M, Eshghabadi M 2010 J. Theor. Appl. Phys. 4 26

    [19]

    Yasserian K, Aslaninejad M 2012 Phys. Plasmas 19 073507

    [20]

    Shaw A K, Kar S, Goswami K S 2012 Phys. Plasmas 19 102108

    [21]

    Moulick R, Mahanta M K, Goswami K S 2013 Phys. Plasmas 20 094501

    [22]

    Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201 (in Chinese)[刘惠平, 邹秀, 邹滨雁, 邱明辉2012 61 035201]

    [23]

    Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505

  • [1]

    Yamada H, Yoshida Z 1992 J. Plasma Phys. 48 229

    [2]

    Femandez-Palop J I, Ballesteros J, Colomer V, Hemandez M A, Dengra A 1995 J. Appl. Phys. 77 2937

    [3]

    Femandez-Palop J I, Colomer V, Ballesteros J, Hemandez M A, Dengra A 1996 Surf. Coat. Technol. 84 341

    [4]

    Amemiya H, Annaratone B M, Allen J E 1998 J. Plasma Phys. 60 81

    [5]

    Li M, Michael A V, Steven K D, Michael J B 2000 IEEE Trans. Plasma Sci. 28 248

    [6]

    Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2003 Chin. Phys. Lett. 20 1537

    [7]

    Hatami M M, Shokri B, Niknam A R 2008 Phys. Plasmas 15 123501

    [8]

    Gong Y, Duan P, Zhang J H, Zou X, Liu J Y, Liu Y 2010 Chin. J. Com. Phy. 27 883 (in Chinese)[宫野, 段萍, 张建红, 邹秀, 刘金远, 刘悦2010计算物理 27 883]

    [9]

    Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032

    [10]

    Zou X, Ji Y K, Zou B Y 2010 Acta Phys. Sin. 59 1902 (in Chinese)[邹秀, 籍延坤, 邹滨雁2010 59 1902]

    [11]

    Ghomi H, Khoramabadi M, Shukla P K, Ghorannevis M 2010 J. Appl. Phys. 108 063302

    [12]

    Ghomi H, Khoramabadi M 2010 J. Plasma Phys. 76 247

    [13]

    Zou X, Liu H P, Qiu M H, Sun X H 2011 Chin. Phys. Lett. 28 125201

    [14]

    Ghomi H, Khoramabadi M 2011 J. Fusion Energ. 30 481

    [15]

    Qiu M H, Liu H P, Zou X 2012 Acta Phys. Sin. 61 155204 (in Chinese)[邱明辉, 刘惠平, 邹秀2012 61 155204]

    [16]

    Hatami M M, Shokri B 2013 Phys. Plasmas 20 033506

    [17]

    Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503

    [18]

    Yasserian K, Aslaninejad M, Borghei M, Eshghabadi M 2010 J. Theor. Appl. Phys. 4 26

    [19]

    Yasserian K, Aslaninejad M 2012 Phys. Plasmas 19 073507

    [20]

    Shaw A K, Kar S, Goswami K S 2012 Phys. Plasmas 19 102108

    [21]

    Moulick R, Mahanta M K, Goswami K S 2013 Phys. Plasmas 20 094501

    [22]

    Liu H P, Zou X, Zou B Y, Qiu M H 2012 Acta Phys. Sin. 61 035201 (in Chinese)[刘惠平, 邹秀, 邹滨雁, 邱明辉2012 61 035201]

    [23]

    Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505

  • [1] Zhao Xin-Li, Ma Guo-Liang, Ma Yu-Gang. Electromagnetic field effects and anomalous chiral phenomena in heavy-ion collisions at intermediate and high energy. Acta Physica Sinica, 2023, 72(11): 112502. doi: 10.7498/aps.72.20230245
    [2] Peng Jia-Lue, Guo Hao, You Tian-Ya, Ji Xian-Bing, Xu Jin-Liang. Behavioral characteristics of droplet collision on Janus particle spheres. Acta Physica Sinica, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [3] Liu Hui-Ping, Zou Xiu. Effects of reflection of electrons and negative ions on magnetized electronegative and collisional plasma sheath. Acta Physica Sinica, 2020, 69(2): 025201. doi: 10.7498/aps.69.20191307
    [4] Yang Shuang-Bo. Effect of temperature and external magnetic field on the structure of electronic state of the Si-uniformlly-doped GaAs quantum well. Acta Physica Sinica, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [5] Jiang Tao, Lu Lin-Guang, Lu Wei-Gang. Numerical study of collision process between two equal diameter liquid micro-droplets using a modified smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [6] Xu Mei, Wang Xiao-Lu, Linghu Rong-Feng, Yang Xiang-Dong. Study on ro-vibrational excitation cross sections of Ne-HF. Acta Physica Sinica, 2013, 62(6): 063102. doi: 10.7498/aps.62.063102
    [7] Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui. Bohm criterion for an electronegative magnetized plasma sheath. Acta Physica Sinica, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [8] Qiu Ming-Hui, Liu Hui-Ping, Zou Xiu. Bohm criterion for a collisinal electronegative plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2012, 61(15): 155204. doi: 10.7498/aps.61.155204
    [9] Zhang Feng-Kui, Ding Yong-Jie. Features of electron-wall collision frequency with saturated sheath in Hall thruster. Acta Physica Sinica, 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [10] Zou Xiu, Ji Yan-Kun, Zou Bin-Yan. The Bohm criterion for a collisional plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [11] Xu Bin, Wu Zhen-Sen, Wu Jian, Xue Kun. Incoherent scatter spectrum of a collisional plasma. Acta Physica Sinica, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [12] Zou Xiu, Zou Bin-Yan, Liu Hui-Ping. Effect of external magnetic field on ion energy density of collisional radio-frequency sheath. Acta Physica Sinica, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [13] Wang Ji-Zhi, Wang Mei-Qin, Wang Ying-Long. The collision of one keyed Hash function based on chaotic map and analysis. Acta Physica Sinica, 2008, 57(5): 2737-2742. doi: 10.7498/aps.57.2737
    [14] Zou Xiu, Liu Hui-Ping, Gu Xiu-E. Sheath structure of a magnetized plasma. Acta Physica Sinica, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [15] Wang Xin-Jun, Wang Ling-Ling, Huang Wei-Qing, Tang Li-Ming, Chen Ke-Qiu. The localized electronic states and transmission spectra in N-layer superlattice with structural defects in finite magnetic fields. Acta Physica Sinica, 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [16] Zou Xiu. Structure of radio-frequency flat plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [17] Duan Fang-Li, Luo Jian-Bin, Wen Shi-Zhu. Repulsion mechanism of nanoparticle colliding with monocrystalline silicon surface. Acta Physica Sinica, 2005, 54(6): 2832-2837. doi: 10.7498/aps.54.2832
    [18] Zou Xiu, Liu Jin-Yuan, Wang Zheng-Xiong, Gong Ye, Liu Yue, Wang Xiao-Gang. Plasma sheath in a magnetic field. Acta Physica Sinica, 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
    [19] Gu Yun-Peng, Ma Teng-Cai. The influence of particle beams on the criterion of Bohm sheath. Acta Physica Sinica, 2003, 52(5): 1196-1202. doi: 10.7498/aps.52.1196
    [20] Li Yan-Ling, Luo Cheng-Lin. . Acta Physica Sinica, 2002, 51(11): 2589-2594. doi: 10.7498/aps.51.2589
Metrics
  • Abstract views:  5890
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2016
  • Accepted Date:  12 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回
Baidu
map