Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel

Liang Hong Chai Zhen-Hua Shi Bao-Chang

Citation:

Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel

Liang Hong, Chai Zhen-Hua, Shi Bao-Chang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The droplet dynamic in a bifurcating micro-channel, as one of the basic multiphase problems, is frequently encountered in the fields of science and engineering. Due to its great relevance to many important applications and also its fascinating physical phenomena, it has attracted the increasing attention in the past decades. However, this problem is still not fully understood since it is very complicated:the droplet behaviors may be influenced by several physical factors. To clearly elucidate the physics governing droplet dynamics in a bifurcating micro-channel, a detailed numerical study on this problem is conducted. The present investigation is based on our recently developed phase-field-based lattice Boltzmann multiphase model, in which one distribution function is used to solve the Cahn-Hilliard equation, and the other is adopted to solve the Navier-Stokes equations. In this paper, we mainly focus on the effects of the surface wettability, capillary number and outlet flux ratio on the droplet dynamics, and the volume of the generated daughter droplet is also presented. The numerical results show that when the capillary number is large enough, the droplet behaviors depend critically on surface wettability. For the nonwetting case, the main droplet breaks up into two daughter droplets, which then completely suspend in the branched channels and flow towards the outlet. While for the wetting case, the main droplet also breaks up into two daughter droplets at first, and then different behaviors can be observed. The daughter droplet undergoes a secondary breakup, which results in part of droplet adhering to the wall, and the remaining flowing to the outlet. The volume of the generated daughter droplet is also measured, and it is shown that it increases linearly with contact angle increasing. When the capillary number is small enough, the droplet remains at the bifurcating position, which does not break up. Finally, we also find that the outlet flux ratio affects the rupture mechanism of the droplet. When the outlet flux ratio is 1, the droplet is split into two identical daughter droplets. When the outlet flux ratio increases, an asymmetric rupture resulting in the generation of two different daughter droplets, will be observed. However, if the outlet flux ratio is larger enough, the droplet does not breakup, and flows into the branched channel where the fluid velocity is larger. Here we define a critical outlet flux ratio, below which the droplet breakup occurs, and above which the droplet does not break up. The relationship between the capillary number and the critical outlet flux ratio is examined, and it is found that the critical outlet flux ratio increases with capillary number increasing.
      Corresponding author: Shi Bao-Chang, shibc@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11602075, 51576079, 11272132).
    [1]

    Teh S Y, Lin R, Hung L H, Lee A P 2008 Lab on Chip 8 198

    [2]

    Seemann R, Brinkmann M, Pfohl T, Herminghaus S 2012 Rep. Prog. Phys. 75 016601

    [3]

    Manga M 1996 J. Fluid Mech. 315 105

    [4]

    Link D, Anna S L, Weitz D, Stone H A 2004 Phys. Rev. Lett. 92 054503

    [5]

    Guillot P, Colin A 2005 Phys. Rev. E 72 066301

    [6]

    Garstecki P, Fuerstman M J, Stone H A, Whitesides G M 2006 Lab on Chip 6 437

    [7]

    De Menech M, Garstecki P, Jousse F, Stone H A 2008 J. Fluid Mech. 595 141

    [8]

    Christopher G F, Noharuddin N N, Taylor J A, Anna S L 2008 Phys. Rev. E 78 036317

    [9]

    Carlson A, Do-Quang M, Amberg G 2010 Int. J. Multiphase Flow 36 397

    [10]

    Woolfenden H, Blyth M 2011 J. Fluid Mech. 669 3

    [11]

    Cong Z X, Zhu C Y, Fu T T, Ma Y G 2015 Sci. China:Chem. 45 34(in Chinese)[丛振霞, 朱春英, 付涛涛, 马友光2015中国科学:化学45 34]

    [12]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320

    [13]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Singapore:World Scientific) pp239-285

    [14]

    Xu A G, Zhang G C, Li Y J, Li H 2014 Progress In Physics 34 136 (in Chinese)[许爱国, 张广财, 李英骏, 李华2014物理学进展34 136]

    [15]

    Chai Z H, Shi B C, Guo Z L 2016 Phys. Rev. E 93 033113

    [16]

    Liang H, Chai Z H, Shi B C, Guo Z L, Zhang T 2014 Phys. Rev. E 90 063311

    [17]

    Liang H, Shi B C, Chai Z H 2016 Phys. Rev. E 93 013308

    [18]

    Rowlinson J S, Widom B 1982 Molecular Theory of Capillarity (Oxford:Clarendon)

    [19]

    De Gennes P G 1985 Rev. Mod. Phys. 57 827

    [20]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [21]

    Huang J J, Huang H, Wang X 2015 Int. J. Numer. Methods Fluids 77 123

    [22]

    Zhang T, Shi B C, Guo Z L, Chai Z H, Lu J H 2012 Phys. Rev. E 85 016701

    [23]

    Ladd A J 1994 J. Fluid Mech. 271 285

    [24]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

    [25]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

  • [1]

    Teh S Y, Lin R, Hung L H, Lee A P 2008 Lab on Chip 8 198

    [2]

    Seemann R, Brinkmann M, Pfohl T, Herminghaus S 2012 Rep. Prog. Phys. 75 016601

    [3]

    Manga M 1996 J. Fluid Mech. 315 105

    [4]

    Link D, Anna S L, Weitz D, Stone H A 2004 Phys. Rev. Lett. 92 054503

    [5]

    Guillot P, Colin A 2005 Phys. Rev. E 72 066301

    [6]

    Garstecki P, Fuerstman M J, Stone H A, Whitesides G M 2006 Lab on Chip 6 437

    [7]

    De Menech M, Garstecki P, Jousse F, Stone H A 2008 J. Fluid Mech. 595 141

    [8]

    Christopher G F, Noharuddin N N, Taylor J A, Anna S L 2008 Phys. Rev. E 78 036317

    [9]

    Carlson A, Do-Quang M, Amberg G 2010 Int. J. Multiphase Flow 36 397

    [10]

    Woolfenden H, Blyth M 2011 J. Fluid Mech. 669 3

    [11]

    Cong Z X, Zhu C Y, Fu T T, Ma Y G 2015 Sci. China:Chem. 45 34(in Chinese)[丛振霞, 朱春英, 付涛涛, 马友光2015中国科学:化学45 34]

    [12]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320

    [13]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Singapore:World Scientific) pp239-285

    [14]

    Xu A G, Zhang G C, Li Y J, Li H 2014 Progress In Physics 34 136 (in Chinese)[许爱国, 张广财, 李英骏, 李华2014物理学进展34 136]

    [15]

    Chai Z H, Shi B C, Guo Z L 2016 Phys. Rev. E 93 033113

    [16]

    Liang H, Chai Z H, Shi B C, Guo Z L, Zhang T 2014 Phys. Rev. E 90 063311

    [17]

    Liang H, Shi B C, Chai Z H 2016 Phys. Rev. E 93 013308

    [18]

    Rowlinson J S, Widom B 1982 Molecular Theory of Capillarity (Oxford:Clarendon)

    [19]

    De Gennes P G 1985 Rev. Mod. Phys. 57 827

    [20]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [21]

    Huang J J, Huang H, Wang X 2015 Int. J. Numer. Methods Fluids 77 123

    [22]

    Zhang T, Shi B C, Guo Z L, Chai Z H, Lu J H 2012 Phys. Rev. E 85 016701

    [23]

    Ladd A J 1994 J. Fluid Mech. 271 285

    [24]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

    [25]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

  • [1] Xie Yi-Chen, Zhuang Xiao-Ru, Yue Si-Jun, Li Xiang, Yu Peng, Lu Chun. Experimental study on flow boiling of HFE-7100 in rectangular parallel microchannel. Acta Physica Sinica, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [2] Dong Pan, Tian Chang, Li Jie, Wang Tao, Yu Hai-Tao, Su Ming-Xu, He Jia-Long, Shi Jin-Shui. Mie scattering based on-line measurement of droplet from vacuum arc. Acta Physica Sinica, 2023, 72(8): 084203. doi: 10.7498/aps.72.20222406
    [3] Zhang Xiao-Lin, Huang Jun-Jie. Study on wetting and spreading behaviors of compound droplets on wedge by lattice Boltzmann method. Acta Physica Sinica, 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [4] Wang Han, Yuan Li, Wang Chao, Wang Ru-Zhi. Structure and thermal properties of periodic split-flow microchannels. Acta Physica Sinica, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
    [5] Deng Zi-Long, Li Peng-Yu, Zhang Xuan, Liu Xiang-Dong. Semi-obstructed splitting behaviors of droplet in an asymmetric microfluidic T-junction. Acta Physica Sinica, 2021, 70(7): 074701. doi: 10.7498/aps.70.20201171
    [6] Yang Ya-Jing, Mei Chen-Xi, Zhang Xu-Dong, Wei Yan-Ju, Liu Sheng-Hua. Kinematics and passing modes of a droplet impacting on a soap film. Acta Physica Sinica, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [7] Li Yu-Jie, Huang Jun-Jie, Xiao Xu-Bin. Numerical study of droplet impact on the inner surface of a cylinder. Acta Physica Sinica, 2018, 67(18): 184701. doi: 10.7498/aps.67.20180364
    [8] Lou Qin,  Li Tao,  Yang Mo. Lattice Boltzmann simulations of rising bubble driven by buoyancy in a complex microchannel. Acta Physica Sinica, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [9] Zang Chen-Qiang, Lou Qin. Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel. Acta Physica Sinica, 2017, 66(13): 134701. doi: 10.7498/aps.66.134701
    [10] Huang Hu, Hong Ning, Liang Hong, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of the droplet impact onto liquid film. Acta Physica Sinica, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [11] Tao Shi, Wang Liang, Guo Zhao-Li. Lattice Boltzmann modeling of microscale oscillating Couette flow. Acta Physica Sinica, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [12] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [13] Yan Han, Zhang Wen-Ming, Hu Kai-Ming, Liu Yan, Meng Guang. Investigation on characteristics of flow in microchannels with random surface roughness. Acta Physica Sinica, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [14] Su Tie-Xiong, Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [15] Liu Qiu-Zu, Kou Zi-Ming, Han Zhen-Nan, Gao Gui-Jun. Dynamic process simulation of droplet spreading on solid surface by lattic Boltzmann method. Acta Physica Sinica, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [16] Li Shi-Xiong, Bai Zhong-Chen, Huang Zheng, Zhang Xin, Qin Shui-Jie, Mao Wen-Xue. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma. Acta Physica Sinica, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [17] Zhang Ming-kun, Chen Shuo, Shang Zhi. Numerical simulation of a droplet motion in a grooved microchannel. Acta Physica Sinica, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [18] Guo Jia-Hong, Dai Shi-Qiang, Dai Qin. Experimental research on the droplet impacting on the liquid film. Acta Physica Sinica, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [19] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [20] Zhang Cheng-Bin, Chen Yong-Ping, Shi Ming-Heng, Fu Pan-Pan, Wu Jia-Feng. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels. Acta Physica Sinica, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
Metrics
  • Abstract views:  6804
  • PDF Downloads:  363
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2016
  • Accepted Date:  05 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map